Tagged: linear combination

Three Linearly Independent Vectors in $\R^3$ Form a Basis. Three Vectors Spanning $\R^3$ Form a Basis.

Problem 574

Let $B=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ be a set of three-dimensional vectors in $\R^3$.

(a) Prove that if the set $B$ is linearly independent, then $B$ is a basis of the vector space $\R^3$.

(b) Prove that if the set $B$ spans $\R^3$, then $B$ is a basis of $\R^3$.

 
Read solution

LoadingAdd to solve later

Linear Algebra Midterm 1 at the Ohio State University (3/3)

Problem 572

The following problems are Midterm 1 problems of Linear Algebra (Math 2568) at the Ohio State University in Autumn 2017.
There were 9 problems that covered Chapter 1 of our textbook (Johnson, Riess, Arnold).
The time limit was 55 minutes.


This post is Part 3 and contains Problem 7, 8, and 9.
Check out Part 1 and Part 2 for the rest of the exam problems.


Problem 7. Let $A=\begin{bmatrix}
-3 & -4\\
8& 9
\end{bmatrix}$ and $\mathbf{v}=\begin{bmatrix}
-1 \\
2
\end{bmatrix}$.

(a) Calculate $A\mathbf{v}$ and find the number $\lambda$ such that $A\mathbf{v}=\lambda \mathbf{v}$.

(b) Without forming $A^3$, calculate the vector $A^3\mathbf{v}$.


Problem 8. Prove that if $A$ and $B$ are $n\times n$ nonsingular matrices, then the product $AB$ is also nonsingular.


Problem 9.
Determine whether each of the following sentences is true or false.

(a) There is a $3\times 3$ homogeneous system that has exactly three solutions.

(b) If $A$ and $B$ are $n\times n$ symmetric matrices, then the sum $A+B$ is also symmetric.

(c) If $n$-dimensional vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly dependent, then the vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ is also linearly dependent for any $n$-dimensional vector $\mathbf{v}_4$.

(d) If the coefficient matrix of a system of linear equations is singular, then the system is inconsistent.

(e) The vectors
\[\mathbf{v}_1=\begin{bmatrix}
1 \\
0 \\
1
\end{bmatrix}, \mathbf{v}_2=\begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix}, \mathbf{v}_3=\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}\] are linearly independent.

 
Read solution

LoadingAdd to solve later

Linear Algebra Midterm 1 at the Ohio State University (2/3)

Problem 571

The following problems are Midterm 1 problems of Linear Algebra (Math 2568) at the Ohio State University in Autumn 2017.
There were 9 problems that covered Chapter 1 of our textbook (Johnson, Riess, Arnold).
The time limit was 55 minutes.


This post is Part 2 and contains Problem 4, 5, and 6.
Check out Part 1 and Part 3 for the rest of the exam problems.


Problem 4. Let
\[\mathbf{a}_1=\begin{bmatrix}
1 \\
2 \\
3
\end{bmatrix}, \mathbf{a}_2=\begin{bmatrix}
2 \\
-1 \\
4
\end{bmatrix}, \mathbf{b}=\begin{bmatrix}
0 \\
a \\
2
\end{bmatrix}.\]

Find all the values for $a$ so that the vector $\mathbf{b}$ is a linear combination of vectors $\mathbf{a}_1$ and $\mathbf{a}_2$.


Problem 5.
Find the inverse matrix of
\[A=\begin{bmatrix}
0 & 0 & 2 & 0 \\
0 &1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{bmatrix}\] if it exists. If you think there is no inverse matrix of $A$, then give a reason.


Problem 6.
Consider the system of linear equations
\begin{align*}
3x_1+2x_2&=1\\
5x_1+3x_2&=2.
\end{align*}

(a) Find the coefficient matrix $A$ of the system.

(b) Find the inverse matrix of the coefficient matrix $A$.

(c) Using the inverse matrix of $A$, find the solution of the system.

(Linear Algebra Midterm Exam 1, the Ohio State University)
 
Read solution

LoadingAdd to solve later

If Two Vectors Satisfy $A\mathbf{x}=0$ then Find Another Solution

Problem 395

Suppose that the vectors
\[\mathbf{v}_1=\begin{bmatrix}
-2 \\
1 \\
0 \\
0 \\
0
\end{bmatrix}, \qquad \mathbf{v}_2=\begin{bmatrix}
-4 \\
0 \\
-3 \\
-2 \\
1
\end{bmatrix}\] are a basis vectors for the null space of a $4\times 5$ matrix $A$. Find a vector $\mathbf{x}$ such that
\[\mathbf{x}\neq0, \quad \mathbf{x}\neq \mathbf{v}_1, \quad \mathbf{x}\neq \mathbf{v}_2,\] and
\[A\mathbf{x}=\mathbf{0}.\]

(Stanford University, Linear Algebra Exam Problem)
 
Read solution

LoadingAdd to solve later

Compute Power of Matrix If Eigenvalues and Eigenvectors Are Given

Problem 373

Let $A$ be a $3\times 3$ matrix. Suppose that $A$ has eigenvalues $2$ and $-1$, and suppose that $\mathbf{u}$ and $\mathbf{v}$ are eigenvectors corresponding to $2$ and $-1$, respectively, where
\[\mathbf{u}=\begin{bmatrix}
1 \\
0 \\
-1
\end{bmatrix} \text{ and } \mathbf{v}=\begin{bmatrix}
2 \\
1 \\
0
\end{bmatrix}.\] Then compute $A^5\mathbf{w}$, where
\[\mathbf{w}=\begin{bmatrix}
7 \\
2 \\
-3
\end{bmatrix}.\]

 
Read solution

LoadingAdd to solve later

Linearly Dependent if and only if a Vector Can be Written as a Linear Combination of Remaining Vectors

Problem 347

Let $V$ be a vector space over a scalar field $K$.
Let $S=\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be the set of vectors in $V$, where $n \geq 2$.

Then prove that the set $S$ is linearly dependent if and only if at least one of the vectors in $S$ can be written as a linear combination of remaining vectors in $S$.

 
Read solution

LoadingAdd to solve later

Linear Transformation to 1-Dimensional Vector Space and Its Kernel

Problem 329

Let $n$ be a positive integer. Let $T:\R^n \to \R$ be a non-zero linear transformation.
Prove the followings.

(a) The nullity of $T$ is $n-1$. That is, the dimension of the nullspace of $T$ is $n-1$.

(b) Let $B=\{\mathbf{v}_1, \cdots, \mathbf{v}_{n-1}\}$ be a basis of the nullspace $\calN(T)$ of $T$.
Let $\mathbf{w}$ be the $n$-dimensional vector that is not in $\calN(T)$. Then
\[B’=\{\mathbf{v}_1, \cdots, \mathbf{v}_{n-1}, \mathbf{w}\}\] is a basis of $\R^n$.

(c) Each vector $\mathbf{u}\in \R^n$ can be expressed as
\[\mathbf{u}=\mathbf{v}+\frac{T(\mathbf{u})}{T(\mathbf{w})}\mathbf{w}\] for some vector $\mathbf{v}\in \calN(T)$.

 
Read solution

LoadingAdd to solve later

Determine linear transformation using matrix representation

Problem 324

Let $T$ be the linear transformation from the $3$-dimensional vector space $\R^3$ to $\R^3$ itself satisfying the following relations.
\begin{align*}
T\left(\, \begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix} \,\right)
=\begin{bmatrix}
1 \\
0 \\
1
\end{bmatrix}, \qquad T\left(\, \begin{bmatrix}
2 \\
3 \\
5
\end{bmatrix} \, \right) =
\begin{bmatrix}
0 \\
2 \\
-1
\end{bmatrix}, \qquad
T \left( \, \begin{bmatrix}
0 \\
1 \\
2
\end{bmatrix} \, \right)=
\begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}.
\end{align*}
Then for any vector
\[\mathbf{x}=\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}\in \R^3,\] find the formula for $T(\mathbf{x})$.

 
Read solution

LoadingAdd to solve later

Find a Condition that a Vector be a Linear Combination

Problem 312

Let
\[\mathbf{v}=\begin{bmatrix}
a \\
b \\
c
\end{bmatrix}, \qquad \mathbf{v}_1=\begin{bmatrix}
1 \\
2 \\
0
\end{bmatrix}, \qquad \mathbf{v}_2=\begin{bmatrix}
2 \\
-1 \\
2
\end{bmatrix}.\] Find the necessary and sufficient condition so that the vector $\mathbf{v}$ is a linear combination of the vectors $\mathbf{v}_1, \mathbf{v}_2$.

 
Read solution

LoadingAdd to solve later

Express a Vector as a Linear Combination of Given Three Vectors

Problem 298

Let
\[\mathbf{v}_1=\begin{bmatrix}
1 \\
5 \\
-1
\end{bmatrix}, \mathbf{v}_2=\begin{bmatrix}
1 \\
4 \\
3
\end{bmatrix}, \mathbf{v}_3=\begin{bmatrix}
1 \\
2 \\
1
\end{bmatrix}, \mathbf{b}=\begin{bmatrix}
2 \\
13 \\
6
\end{bmatrix}.\] Express the vector $\mathbf{b}$ as a linear combination of the vector $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.

(The Ohio State University, Linear Algebra Midterm Exam Problem)
 
Read solution

LoadingAdd to solve later

Linearly Independent vectors $\mathbf{v}_1, \mathbf{v}_2$ and Linearly Independent Vectors $A\mathbf{v}_1, A\mathbf{v}_2$ for a Nonsingular Matrix

Problem 284

Let $\mathbf{v}_1$ and $\mathbf{v}_2$ be $2$-dimensional vectors and let $A$ be a $2\times 2$ matrix.

(a) Show that if $\mathbf{v}_1, \mathbf{v}_2$ are linearly dependent vectors, then the vectors $A\mathbf{v}_1, A\mathbf{v}_2$ are also linearly dependent.

(b) If $\mathbf{v}_1, \mathbf{v}_2$ are linearly independent vectors, can we conclude that the vectors $A\mathbf{v}_1, A\mathbf{v}_2$ are also linearly independent?

(c) If $\mathbf{v}_1, \mathbf{v}_2$ are linearly independent vectors and $A$ is nonsingular, then show that the vectors $A\mathbf{v}_1, A\mathbf{v}_2$ are also linearly independent.

 
Read solution

LoadingAdd to solve later

Dual Vector Space and Dual Basis, Some Equality

Problem 282

Let $V$ be a finite dimensional vector space over a field $k$ and let $V^*=\Hom(V, k)$ be the dual vector space of $V$.
Let $\{v_i\}_{i=1}^n$ be a basis of $V$ and let $\{v^i\}_{i=1}^n$ be the dual basis of $V^*$. Then prove that
\[x=\sum_{i=1}^nv^i(x)v_i\] for any vector $x\in V$.

 
Read solution

LoadingAdd to solve later

Quiz 3. Condition that Vectors are Linearly Dependent/ Orthogonal Vectors are Linearly Independent

Problem 281

(a) For what value(s) of $a$ is the following set $S$ linearly dependent?
\[ S=\left \{\,\begin{bmatrix}
1 \\
2 \\
3 \\
a
\end{bmatrix}, \begin{bmatrix}
a \\
0 \\
-1 \\
2
\end{bmatrix}, \begin{bmatrix}
0 \\
0 \\
a^2 \\
7
\end{bmatrix}, \begin{bmatrix}
1 \\
a \\
1 \\
1
\end{bmatrix}, \begin{bmatrix}
2 \\
-2 \\
3 \\
a^3
\end{bmatrix} \, \right\}.\]

(b) Let $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ be a set of nonzero vectors in $\R^m$ such that the dot product
\[\mathbf{v}_i\cdot \mathbf{v}_j=0\] when $i\neq j$.
Prove that the set is linearly independent.

 
Read solution

LoadingAdd to solve later

Determine Conditions on Scalars so that the Set of Vectors is Linearly Dependent

Problem 279

Determine conditions on the scalars $a, b$ so that the following set $S$ of vectors is linearly dependent.
\begin{align*}
S=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\},
\end{align*}
where
\[\mathbf{v}_1=\begin{bmatrix}
1 \\
3 \\
1
\end{bmatrix}, \mathbf{v}_2=\begin{bmatrix}
1 \\
a \\
4
\end{bmatrix}, \mathbf{v}_3=\begin{bmatrix}
0 \\
2 \\
b
\end{bmatrix}.\]  
Read solution

LoadingAdd to solve later

Determine Linearly Independent or Linearly Dependent. Express as a Linear Combination

Problem 277

Determine whether the following set of vectors is linearly independent or linearly dependent. If the set is linearly dependent, express one vector in the set as a linear combination of the others.
\[\left\{\, \begin{bmatrix}
1 \\
0 \\
-1 \\
0
\end{bmatrix}, \begin{bmatrix}
1 \\
2 \\
3 \\
4
\end{bmatrix}, \begin{bmatrix}
-1 \\
-2 \\
0 \\
1
\end{bmatrix},
\begin{bmatrix}
-2 \\
-2 \\
7 \\
11
\end{bmatrix}\, \right\}.\]

 
Read solution

LoadingAdd to solve later

Linear Combination of Eigenvectors is Not an Eigenvector

Problem 258

Suppose that $\lambda$ and $\mu$ are two distinct eigenvalues of a square matrix $A$ and let $\mathbf{x}$ and $\mathbf{y}$ be eigenvectors corresponding to $\lambda$ and $\mu$, respectively.
If $a$ and $b$ are nonzero numbers, then prove that $a \mathbf{x}+b\mathbf{y}$ is not an eigenvector of $A$ (corresponding to any eigenvalue of $A$).

 
Read solution

LoadingAdd to solve later

Compute Determinant of a Matrix Using Linearly Independent Vectors

Problem 193

Let $A$ be a $3 \times 3$ matrix.
Let $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are linearly independent $3$-dimensional vectors. Suppose that we have
\[A\mathbf{x}=\begin{bmatrix}
1 \\
0 \\
1
\end{bmatrix}, A\mathbf{y}=\begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix}, A\mathbf{z}=\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix}.\]

Then find the value of the determinant of the matrix $A$.

 
Read solution

LoadingAdd to solve later

Given All Eigenvalues and Eigenspaces, Compute a Matrix Product

Problem 189

Let $C$ be a $4 \times 4$ matrix with all eigenvalues $\lambda=2, -1$ and eigensapces
\[E_2=\Span\left \{\quad \begin{bmatrix}
1 \\
1 \\
1 \\
1
\end{bmatrix} \quad\right \} \text{ and } E_{-1}=\Span\left \{ \quad\begin{bmatrix}
1 \\
2 \\
1 \\
1
\end{bmatrix},\quad \begin{bmatrix}
1 \\
1 \\
1 \\
2
\end{bmatrix} \quad\right\}.\]

Calculate $C^4 \mathbf{u}$ for $\mathbf{u}=\begin{bmatrix}
6 \\
8 \\
6 \\
9
\end{bmatrix}$ if possible. Explain why if it is not possible!

(The Ohio State University Linear Algebra Exam Problem)
 
Read solution

LoadingAdd to solve later

Two Eigenvectors Corresponding to Distinct Eigenvalues are Linearly Independent

Problem 187

Let $A$ be an $n\times n$ matrix. Suppose that $\lambda_1, \lambda_2$ are distinct eigenvalues of the matrix $A$ and let $\mathbf{v}_1, \mathbf{v}_2$ be eigenvectors corresponding to $\lambda_1, \lambda_2$, respectively.

Show that the vectors $\mathbf{v}_1, \mathbf{v}_2$ are linearly independent.

 
Read solution

LoadingAdd to solve later