# Tagged: linearity

## Problem 339

Let $\{\mathbf{v}_1, \mathbf{v}_2\}$ be a basis of the vector space $\R^2$, where
$\mathbf{v}_1=\begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ and } \mathbf{v}_2=\begin{bmatrix} 1 \\ -1 \end{bmatrix}.$ The action of a linear transformation $T:\R^2\to \R^3$ on the basis $\{\mathbf{v}_1, \mathbf{v}_2\}$ is given by
\begin{align*}
T(\mathbf{v}_1)=\begin{bmatrix}
2 \\
4 \\
6
\end{bmatrix} \text{ and } T(\mathbf{v}_2)=\begin{bmatrix}
0 \\
8 \\
10
\end{bmatrix}.
\end{align*}

Find the formula of $T(\mathbf{x})$, where
$\mathbf{x}=\begin{bmatrix} x \\ y \end{bmatrix}\in \R^2.$

## Problem 324

Let $T$ be the linear transformation from the $3$-dimensional vector space $\R^3$ to $\R^3$ itself satisfying the following relations.
\begin{align*}
T\left(\, \begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix} \,\right)
=\begin{bmatrix}
1 \\
0 \\
1
2 \\
3 \\
5
\end{bmatrix} \, \right) =
\begin{bmatrix}
0 \\
2 \\
-1
T \left( \, \begin{bmatrix}
0 \\
1 \\
2
\end{bmatrix} \, \right)=
\begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}.
\end{align*}
Then for any vector
$\mathbf{x}=\begin{bmatrix} x \\ y \\ z \end{bmatrix}\in \R^3,$ find the formula for $T(\mathbf{x})$.

## Problem 255

Let $B=\{\mathbf{v}_1, \mathbf{v}_2 \}$ be a basis for the vector space $\R^2$, and let $T:\R^2 \to \R^2$ be a linear transformation such that
$T(\mathbf{v}_1)=\begin{bmatrix} 1 \\ -2 \end{bmatrix} \text{ and } T(\mathbf{v}_2)=\begin{bmatrix} 3 \\ 1 \end{bmatrix}.$

If $\mathbf{e}_1=\mathbf{v}_1+2\mathbf{v}_2 \text{ and } \mathbf{e}_2=2\mathbf{v}_1-\mathbf{u}_2$, where $\mathbf{e}_1, \mathbf{e}_2$ are the standard unit vectors in $\R^2$, then find the matrix of $T$ with respect to the basis $\{\mathbf{e}_1, \mathbf{e}_2\}$.