Prove that $(A + B) \mathbf{v} = A\mathbf{v} + B\mathbf{v}$ Using the Matrix Components
Problem 635
Let $A$ and $B$ be $n \times n$ matrices, and $\mathbf{v}$ an $n \times 1$ column vector.
Use the matrix components to prove that $(A + B) \mathbf{v} = A\mathbf{v} + B\mathbf{v}$.
Add to solve later