Suppose that an $n \times m$ matrix $M$ is composed of the column vectors $\mathbf{b}_1 , \cdots , \mathbf{b}_m$.

Prove that a vector $\mathbf{v} \in \R^n$ can be written as a linear combination of the column vectors if and only if there is a vector $\mathbf{x}$ which solves the equation $M \mathbf{x} = \mathbf{v}$.

A square matrix $A$ is called idempotent if $A^2=A$.

(a) Suppose $A$ is an $n \times n$ idempotent matrix and let $I$ be the $n\times n$ identity matrix. Prove that the matrix $I-A$ is an idempotent matrix.

(b) Assume that $A$ is an $n\times n$ nonzero idempotent matrix. Then determine all integers $k$ such that the matrix $I-kA$ is idempotent.

(c) Let $A$ and $B$ be $n\times n$ matrices satisfying
\[AB=A \text{ and } BA=B.\]
Then prove that $A$ is an idempotent matrix.

Let $A$ be an $n\times n$ matrix. Assume that every vector $\mathbf{x}$ in $\R^n$ is an eigenvector for some eigenvalue of $A$.
Prove that there exists $\lambda\in \R$ such that $A=\lambda I$, where $I$ is the $n\times n$ identity matrix.

Each of the following sets are not a subspace of the specified vector space. For each set, give a reason why it is not a subspace. (1) \[S_1=\left \{\, \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} \in \R^3 \quad \middle | \quad x_1\geq 0 \,\right \}\]
in the vector space $\R^3$.

(2) \[S_2=\left \{\, \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} \in \R^3 \quad \middle | \quad x_1-4x_2+5x_3=2 \,\right \}\]
in the vector space $\R^3$.

(3) \[S_3=\left \{\, \begin{bmatrix}
x \\
y
\end{bmatrix}\in \R^2 \quad \middle | \quad y=x^2 \quad \,\right \}\]
in the vector space $\R^2$.

(4) Let $P_4$ be the vector space of all polynomials of degree $4$ or less with real coefficients.
\[S_4=\{ f(x)\in P_4 \mid f(1) \text{ is an integer}\}\]
in the vector space $P_4$.

(5) \[S_5=\{ f(x)\in P_4 \mid f(1) \text{ is a rational number}\}\]
in the vector space $P_4$.

(6) Let $M_{2 \times 2}$ be the vector space of all $2\times 2$ real matrices.
\[S_6=\{ A\in M_{2\times 2} \mid \det(A) \neq 0\} \]
in the vector space $M_{2\times 2}$.

(7) \[S_7=\{ A\in M_{2\times 2} \mid \det(A)=0\} \]
in the vector space $M_{2\times 2}$.

(Linear Algebra Exam Problem, the Ohio State University)

(8) Let $C[-1, 1]$ be the vector space of all real continuous functions defined on the interval $[a, b]$.
\[S_8=\{ f(x)\in C[-2,2] \mid f(-1)f(1)=0\} \]
in the vector space $C[-2, 2]$.

(9) \[S_9=\{ f(x) \in C[-1, 1] \mid f(x)\geq 0 \text{ for all } -1\leq x \leq 1\}\]
in the vector space $C[-1, 1]$.

(10) Let $C^2[a, b]$ be the vector space of all real-valued functions $f(x)$ defined on $[a, b]$, where $f(x), f'(x)$, and $f^{\prime\prime}(x)$ are continuous on $[a, b]$. Here $f'(x), f^{\prime\prime}(x)$ are the first and second derivative of $f(x)$.
\[S_{10}=\{ f(x) \in C^2[-1, 1] \mid f^{\prime\prime}(x)+f(x)=\sin(x) \text{ for all } -1\leq x \leq 1\}\]
in the vector space $C[-1, 1]$.

(11) Let $S_{11}$ be the set of real polynomials of degree exactly $k$, where $k \geq 1$ is an integer, in the vector space $P_k$.

(12) Let $V$ be a vector space and $W \subset V$ a vector subspace. Define the subset $S_{12}$ to be the complement of $W$,
\[ V \setminus W = \{ \mathbf{v} \in V \mid \mathbf{v} \not\in W \}.\]

Let $G=\GL(n, \R)$ be the general linear group of degree $n$, that is, the group of all $n\times n$ invertible matrices.
Consider the subset of $G$ defined by
\[\SL(n, \R)=\{X\in \GL(n,\R) \mid \det(X)=1\}.\]
Prove that $\SL(n, \R)$ is a subgroup of $G$. Furthermore, prove that $\SL(n,\R)$ is a normal subgroup of $G$.
The subgroup $\SL(n,\R)$ is called special linear group

Let $A$ be the matrix for a linear transformation $T:\R^n \to \R^n$ with respect to the standard basis of $\R^n$.
We assume that $A$ is idempotent, that is, $A^2=A$.
Then prove that
\[\R^n=\im(T) \oplus \ker(T).\]

Suppose that $A$ is $2\times 2$ matrix that has eigenvalues $-1$ and $3$.
Then for each positive integer $n$ find $a_n$ and $b_n$ such that
\[A^{n+1}=a_nA+b_nI,\]
where $I$ is the $2\times 2$ identity matrix.

Let $V$ be a real vector space of all real sequences
\[(a_i)_{i=1}^{\infty}=(a_1, a_2, \dots).\]
Let $U$ be a subspace of $V$ defined by
\[U=\{(a_i)_{i=1}^{\infty}\in V \mid a_{n+2}=2a_{n+1}+3a_{n} \text{ for } n=1, 2,\dots \}.\]
Let $T$ be the linear transformation from $U$ to $U$ defined by
\[T\big((a_1, a_2, \dots)\big)=(a_2, a_3, \dots). \]

(a) Find the eigenvalues and eigenvectors of the linear transformation $T$.

(b) Use the result of (a), find a sequence $(a_i)_{i=1}^{\infty}$ satisfying $a_1=2, a_2=7$.

Let $n$ be an odd positive integer.
Determine whether there exists an $n \times n$ real matrix $A$ such that
\[A^2+I=O,\]
where $I$ is the $n \times n$ identity matrix and $O$ is the $n \times n$ zero matrix.

If such a matrix $A$ exists, find an example. If not, prove that there is no such $A$.

(a) Let $A=\begin{bmatrix}
1 & 2 & 1 \\
3 &6 &4
\end{bmatrix}$ and let
\[\mathbf{a}=\begin{bmatrix}
-3 \\
1 \\
1
\end{bmatrix}, \qquad \mathbf{b}=\begin{bmatrix}
-2 \\
1 \\
0
\end{bmatrix}, \qquad \mathbf{c}=\begin{bmatrix}
1 \\
1
\end{bmatrix}.\]
For each of the vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$, determine whether the vector is in the null space $\calN(A)$. Do the same for the range $\calR(A)$.

(b) Find a basis of the null space of the matrix $B=\begin{bmatrix}
1 & 1 & 2 \\
-2 &-2 &-4
\end{bmatrix}$.

Let $A$ and $B$ be $n\times n$ matrices. Then prove that
\[\calN(A)\cap \calN(B) \subset \calN(A+B),\]
where $\calN(A)$ is the null space (kernel) of the matrix $A$.

Let $V$ be a real vector space of all real sequences
\[(a_i)_{i=1}^{\infty}=(a_1, a_2, \dots).\]
Let $U$ be the subspace of $V$ consisting of all real sequences that satisfy the linear recurrence relation
\[a_{k+2}-5a_{k+1}+3a_{k}=0\]
for $k=1, 2, \dots$.
Let $T$ be the linear transformation from $U$ to $U$ defined by
\[T\big((a_1, a_2, \dots)\big)=(a_2, a_3, \dots). \]

Let $B=\{\mathbf{u}_1, \mathbf{u}_2\}$ be a basis of $U$, where
\begin{align*}
\mathbf{u}_1&=(1, 0, -3, -15, -66, \dots)\\
\mathbf{u}_2&=(0, 1, 5, 22, 95, \dots).
\end{align*}
Let $A$ be the matrix representation of the linear transformation $T: U \to U$ with respect to the basis $B$.

(a) Find the eigenvalues and eigenvectors of $T$.

(b) Use the result of (a), find a sequence $(a_i)_{i=1}^{\infty}$ satisfying the linear recurrence relation $a_{k+2}-5a_{k+1}+3a_{k}=0$ and the initial condition $a_1=1, a_2=1$.

(c) Find the formula for the sequences $(a_i)_{i=1}^{\infty}$ satisfying the linear recurrence relation $a_{k+2}-5a_{k+1}+3a_{k}=0$ and express it using $a_1, a_2$.

Let $V$ be a real vector space of all real sequences
\[(a_i)_{i=1}^{\infty}=(a_1, a_2, \dots).\]
Let $U$ be the subspace of $V$ consisting of all real sequences that satisfy the linear recurrence relation $a_{k+2}-5a_{k+1}+3a_{k}=0$ for $k=1, 2, \dots$.

(a) Let
\begin{align*}
\mathbf{u}_1&=(1, 0, -3, -15, -66, \dots)\\
\mathbf{u}_2&=(0, 1, 5, 22, 95, \dots)
\end{align*}
be vectors in $U$. Prove that $\{\mathbf{u}_1, \mathbf{u}_2\}$ is a basis of $U$ and conclude that the dimension of $U$ is $2$.

(b) Let $T$ be a map from $U$ to $U$ defined by
\[T\big((a_1, a_2, \dots)\big)=(a_2, a_3, \dots). \]
Verify that the map $T$ actually sends a vector $(a_i)_{i=1}^{\infty}\in V$ to a vector $T\big((a_i)_{i=1}^{\infty}\big)$ in $U$, and show that $T$ is a linear transformation from $U$ to $U$.

(c) With respect to the basis $\{\mathbf{u}_1, \mathbf{u}_2\}$ obtained in (a), find the matrix representation $A$ of the linear transformation $T:U \to U$ from (b).

Let $A$ be a real $7\times 3$ matrix such that its null space is spanned by the vectors
\[\begin{bmatrix}
1 \\
2 \\
0
\end{bmatrix}, \begin{bmatrix}
2 \\
1 \\
0
\end{bmatrix}, \text{ and } \begin{bmatrix}
1 \\
-1 \\
0
\end{bmatrix}.\]
Then find the rank of the matrix $A$.

(Purdue University, Linear Algebra Final Exam Problem)

Find the inverse matrix of
\[A=\begin{bmatrix}
1 & 1 & 2 \\
0 &0 &1 \\
1 & 0 & 1
\end{bmatrix}\]
if it exists. If you think there is no inverse matrix of $A$, then give a reason.

(The Ohio State University, Linear Algebra Midterm Exam Problem)