# Tagged: matrix

## Problem 251

Let $A$ be an $n\times n$ invertible matrix. Prove that the inverse matrix of $A$ is uniques.

## Problem 250

Let $\mathbf{u}$ and $\mathbf{v}$ be vectors in $\R^n$, and let $I$ be the $n \times n$ identity matrix. Suppose that the inner product of $\mathbf{u}$ and $\mathbf{v}$ satisfies
$\mathbf{v}^{\trans}\mathbf{u}\neq -1.$ Define the matrix
$A=I+\mathbf{u}\mathbf{v}^{\trans}.$

Prove that $A$ is invertible and the inverse matrix is given by the formula
$A^{-1}=I-a\mathbf{u}\mathbf{v}^{\trans},$ where
$a=\frac{1}{1+\mathbf{v}^{\trans}\mathbf{u}}.$ This formula is called the Sherman-Woodberry formula.

## Problem 249

Suppose that the following matrix $A$ is the augmented matrix for a system of linear equations.
$A= \left[\begin{array}{rrr|r} 1 & 2 & 3 & 4 \\ 2 &-1 & -2 & a^2 \\ -1 & -7 & -11 & a \end{array} \right],$ where $a$ is a real number. Determine all the values of $a$ so that the corresponding system is consistent.

## Problem 248

We say that two $m\times n$ matrices are row equivalent if one can be obtained from the other by a sequence of elementary row operations.

Let $A$ and $I$ be $2\times 2$ matrices defined as follows.
$A=\begin{bmatrix} 1 & b\\ c& d \end{bmatrix}, \qquad I=\begin{bmatrix} 1 & 0\\ 0& 1 \end{bmatrix}.$ Prove that the matrix $A$ is row equivalent to the matrix $I$ if $d-cb \neq 0$.

## Problem 242

Let
$A=\begin{bmatrix} 1 & 2 & 2 \\ 2 &3 &2 \\ -1 & -3 & -4 \end{bmatrix} \text{ and } B=\begin{bmatrix} 1 & 2 & 2 \\ 2 &3 &2 \\ 5 & 3 & 3 \end{bmatrix}.$

Determine the null spaces of matrices $A$ and $B$.

## Problem 237

Let $A$ be an $n \times n$ matrix. Suppose that all the eigenvalues $\lambda$ of $A$ are real and satisfy $\lambda <1$.

Then show that the determinant $\det(I-A) >0,$ where $I$ is the $n \times n$ identity matrix.

## Problem 236

Let $V$ denote the vector space of all real $n\times n$ matrices, where $n$ is a positive integer.

Determine whether the set $U$ of all $n\times n$ nilpotent matrices is a subspace of the vector space $V$ or not.

## Problem 222

Suppose that $n\times n$ matrices $A$ and $B$ are similar.

Then show that the nullity of $A$ is equal to the nullity of $B$.
In other words, the dimension of the null space (kernel) $\calN(A)$ of $A$ is the same as the dimension of the null space $\calN(B)$ of $B$.

## Problem 218

For a real number $0\leq \theta \leq \pi$, we define the real $3\times 3$ matrix $A$ by
$A=\begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta &\cos\theta &0 \\ 0 & 0 & 1 \end{bmatrix}.$

(a) Find the determinant of the matrix $A$.

(b) Show that $A$ is an orthogonal matrix.

(c) Find the eigenvalues of $A$.

## Problem 217

Let $A, B, C$ are $2\times 2$ diagonalizable matrices.

The graphs of characteristic polynomials of $A, B, C$ are shown below. The red graph is for $A$, the blue one for $B$, and the green one for $C$.

From this information, determine the rank of the matrices $A, B,$ and $C$.

Graphs of characteristic polynomials

## Problem 216

Let
$A=\begin{bmatrix} 1 & 3 & 3 \\ -3 &-5 &-3 \\ 3 & 3 & 1 \end{bmatrix} \text{ and } B=\begin{bmatrix} 2 & 4 & 3 \\ -4 &-6 &-3 \\ 3 & 3 & 1 \end{bmatrix}.$ For this problem, you may use the fact that both matrices have the same characteristic polynomial:
$p_A(\lambda)=p_B(\lambda)=-(\lambda-1)(\lambda+2)^2.$

(a) Find all eigenvectors of $A$.

(b) Find all eigenvectors of $B$.

(c) Which matrix $A$ or $B$ is diagonalizable?

(d) Diagonalize the matrix stated in (c), i.e., find an invertible matrix $P$ and a diagonal matrix $D$ such that $A=PDP^{-1}$ or $B=PDP^{-1}$.

(Stanford University Linear Algebra Final Exam Problem)

## Problem 214

Find the inverse matrix of the matrix
$A=\begin{bmatrix} \frac{2}{7} & \frac{3}{7} & \frac{6}{7} \\[6 pt] \frac{6}{7} &\frac{2}{7} &-\frac{3}{7} \\[6pt] -\frac{3}{7} & \frac{6}{7} & -\frac{2}{7} \end{bmatrix}.$

## Problem 213

Let $A, B$ be matrices. Show that if $A$ is diagonalizable and if $B$ is similar to $A$, then $B$ is diagonalizable.

## Problem 210

Let $A$ be an $n\times n$ matrix with real number entries.

Show that if $A$ is diagonalizable by an orthogonal matrix, then $A$ is a symmetric matrix.

## Problem 202

Show that eigenvalues of a Hermitian matrix $A$ are real numbers.

(The Ohio State University Linear Algebra Exam Problem)

## Problem 200

Let
$A=\begin{bmatrix} 5 & 2 & -1 \\ 2 &2 &2 \\ -1 & 2 & 5 \end{bmatrix}.$

Pick your favorite number $a$. Find the dimension of the null space of the matrix $A-aI$, where $I$ is the $3\times 3$ identity matrix.

Your score of this problem is equal to that dimension times five.

(The Ohio State University Linear Algebra Practice Problem)

## Problem 194

Find the value(s) of $h$ for which the following set of vectors
$\left \{ \mathbf{v}_1=\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \mathbf{v}_2=\begin{bmatrix} h \\ 1 \\ -h \end{bmatrix}, \mathbf{v}_3=\begin{bmatrix} 1 \\ 2h \\ 3h+1 \end{bmatrix}\right\}$ is linearly independent.

(Boston College, Linear Algebra Midterm Exam Sample Problem)

## Problem 193

Let $A$ be a $3 \times 3$ matrix.
Let $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are linearly independent $3$-dimensional vectors. Suppose that we have
$A\mathbf{x}=\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, A\mathbf{y}=\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, A\mathbf{z}=\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$

Then find the value of the determinant of the matrix $A$.

## Problem 191

Let
$A=\begin{bmatrix} 1 & -1\\ 2& 3 \end{bmatrix}.$

Find the eigenvalues and the eigenvectors of the matrix
$B=A^4-3A^3+3A^2-2A+8E.$

(Nagoya University Linear Algebra Exam Problem)

$A=\begin{bmatrix} 1 & 1.00001 & 1 \\ 1.00001 &1 &1.00001 \\ 1 & 1.00001 & 1 \end{bmatrix}$ has one positive eigenvalue and one negative eigenvalue.