Tagged: matrix

The Null Space (the Kernel) of a Matrix is a Subspace of $\R^n$

Problem 121

Let $A$ be an $m \times n$ real matrix. Then the null space $\calN(A)$ of $A$ is defined by
\[ \calN(A)=\{ \mathbf{x}\in \R^n \mid A\mathbf{x}=\mathbf{0}_m\}.\] That is, the null space is the set of solutions to the homogeneous system $A\mathbf{x}=\mathbf{0}_m$.

Prove that the null space $\calN(A)$ is a subspace of the vector space $\R^n$.
(Note that the null space is also called the kernel of $A$.)
 
Read solution

LoadingAdd to solve later

Express a Vector as a Linear Combination of Other Vectors


Problem 115

Express the vector $\mathbf{b}=\begin{bmatrix}
2 \\
13 \\
6
\end{bmatrix}$ as a linear combination of the vectors
\[\mathbf{v}_1=\begin{bmatrix}
1 \\
5 \\
-1
\end{bmatrix},
\mathbf{v}_2=
\begin{bmatrix}
1 \\
2 \\
1
\end{bmatrix},
\mathbf{v}_3=
\begin{bmatrix}
1 \\
4 \\
3
\end{bmatrix}.\]

 
(The Ohio State University, Linear Algebra Exam)

 
Read solution

LoadingAdd to solve later

10 True or False Problems about Basic Matrix Operations

Problem 104

Test your understanding of basic properties of matrix operations.

There are 10 True or False Quiz Problems.

These 10 problems are very common and essential.
So make sure to understand these and don’t lose a point if any of these is your exam problems.
(These are actual exam problems at the Ohio State University.)

You can take the quiz as many times as you like.

The solutions will be given after completing all the 10 problems.
Click the View question button to see the solutions.

 
Read solution

LoadingAdd to solve later

Possibilities For the Number of Solutions for a Linear System

Problem 102

Determine whether the following systems of equations (or matrix equations) described below has no solution, one unique solution or infinitely many solutions and justify your answer.


(a) \[\left\{
\begin{array}{c}
ax+by=c \\
dx+ey=f,
\end{array}
\right.
\] where $a,b,c, d$ are scalars satisfying $a/d=b/e=c/f$.


(b) $A \mathbf{x}=\mathbf{0}$, where $A$ is a singular matrix.


(c) A homogeneous system of $3$ equations in $4$ unknowns.


(d) $A\mathbf{x}=\mathbf{b}$, where the row-reduced echelon form of the augmented matrix $[A|\mathbf{b}]$ looks as follows:
\[\begin{bmatrix}
1 & 0 & -1 & 0 \\
0 &1 & 2 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}.\] (The Ohio State University, Linear Algebra Exam)
Read solution

LoadingAdd to solve later

Companion Matrix for a Polynomial

Problem 85

Consider a polynomial
\[p(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0,\] where $a_i$ are real numbers.
Define the matrix
\[A=\begin{bmatrix}
0 & 0 & \dots & 0 &-a_0 \\
1 & 0 & \dots & 0 & -a_1 \\
0 & 1 & \dots & 0 & -a_2 \\
\vdots & & \ddots & & \vdots \\
0 & 0 & \dots & 1 & -a_{n-1}
\end{bmatrix}.\]

Then prove that the characteristic polynomial $\det(xI-A)$ of $A$ is the polynomial $p(x)$.
The matrix is called the companion matrix of the polynomial $p(x)$.

 

Read solution

LoadingAdd to solve later

The Vector Space Consisting of All Traceless Diagonal Matrices

Problem 79

Let $V$ be the set of all $n \times n$ diagonal matrices whose traces are zero.
That is,

\begin{equation*}
V:=\left\{ A=\begin{bmatrix}
a_{11} & 0 & \dots & 0 \\
0 &a_{22} & \dots & 0 \\
0 & 0 & \ddots & \vdots \\
0 & 0 & \dots & a_{nn}
\end{bmatrix} \quad \middle| \quad
\begin{array}{l}
a_{11}, \dots, a_{nn} \in \C,\\
\tr(A)=0 \\
\end{array}
\right\}
\end{equation*}

Let $E_{ij}$ denote the $n \times n$ matrix whose $(i,j)$-entry is $1$ and zero elsewhere.

(a) Show that $V$ is a subspace of the vector space $M_n$ over $\C$ of all $n\times n$ matrices. (You may assume without a proof that $M_n$ is a vector space.)

(b) Show that matrices
\[E_{11}-E_{22}, \, E_{22}-E_{33}, \, \dots,\, E_{n-1\, n-1}-E_{nn}\] are a basis for the vector space $V$.

(c) Find the dimension of $V$.
Read solution

LoadingAdd to solve later