Tagged: matrix

Conditions on Coefficients that a Matrix is Nonsingular

Problem 72

(a) Let $A=(a_{ij})$ be an $n\times n$ matrix. Suppose that the entries of the matrix $A$ satisfy the following relation.
\[|a_{ii}|>|a_{i1}|+\cdots +|a_{i\,i-1}|+|a_{i \, i+1}|+\cdots +|a_{in}|\] for all $1 \leq i \leq n$.
Show that the matrix $A$ is nonsingular.

(b) Let $B=(b_{ij})$ be an $n \times n$ matrix whose entries satisfy the relation
\[ |b_{i\,i}|=1 \hspace{0.5cm} \text{ and }\hspace{0.5cm} |b_{ij}|<\frac{1}{n-1}\] for all $i$ and $j$ with $i \neq j$.
Prove that the matrix $B$ is nonsingular.

(c)
Determine whether the following matrix is nonsingular or not.
\[C=\begin{bmatrix}
\pi & e & e^2/2\pi^2 \\[5 pt] e^2/2\pi^2 &\pi &e \\[5pt] e & e^2/2\pi^2 & \pi
\end{bmatrix},\] where $\pi=3.14159\dots$, and $e=2.71828\dots$ is Euler’s number (or Napier’s constant).

 

Read solution

LoadingAdd to solve later

Matrix Representations for Linear Transformations of the Vector Space of Polynomials

Problem 71

Let $P_2(\R)$ be the vector space over $\R$ consisting of all polynomials with real coefficients of degree $2$ or less.
Let $B=\{1,x,x^2\}$ be a basis of the vector space $P_2(\R)$.
For each linear transformation $T:P_2(\R) \to P_2(\R)$ defined below, find the matrix representation of $T$ with respect to the basis $B$. For $f(x)\in P_2(\R)$, define $T$ as follows.

(a) \[T(f(x))=\frac{\mathrm{d}^2}{\mathrm{d}x^2} f(x)-3\frac{\mathrm{d}}{\mathrm{d}x}f(x)\]

(b) \[T(f(x))=\int_{-1}^1\! (t-x)^2f(t) \,\mathrm{d}t\]

(c) \[T(f(x))=e^x \frac{\mathrm{d}}{\mathrm{d}x}(e^{-x}f(x))\]

 

Read solution

LoadingAdd to solve later

Is an Eigenvector of a Matrix an Eigenvector of its Inverse?

Problem 70

Suppose that $A$ is an $n \times n$ matrix with eigenvalue $\lambda$ and corresponding eigenvector $\mathbf{v}$.

(a) If $A$ is invertible, is $\mathbf{v}$ an eigenvector of $A^{-1}$? If so, what is the corresponding eigenvalue? If not, explain why not.

(b) Is $3\mathbf{v}$ an eigenvector of $A$? If so, what is the corresponding eigenvalue? If not, explain why not.

 

(Stanford University, Linear Algebra Exam)

Read solution

LoadingAdd to solve later

Matrices Satisfying $HF-FH=-2F$

Problem 69

Let $F$ and $H$ be an $n\times n$ matrices satisfying the relation
\[HF-FH=-2F.\]

(a) Find the trace of the matrix $F$.

(b) Let $\lambda$ be an eigenvalue of $H$ and let $\mathbf{v}$ be an eigenvector corresponding to $\lambda$. Show that there exists an positive integer $N$ such that $F^N\mathbf{v}=\mathbf{0}$.

Read solution

LoadingAdd to solve later

Matrices Satisfying the Relation $HE-EH=2E$

Problem 68

Let $H$ and $E$ be $n \times n$ matrices satisfying the relation
\[HE-EH=2E.\] Let $\lambda$ be an eigenvalue of the matrix $H$ such that the real part of $\lambda$ is the largest among the eigenvalues of $H$.
Let $\mathbf{x}$ be an eigenvector corresponding to $\lambda$. Then prove that
\[E\mathbf{x}=\mathbf{0}.\]

Read solution

LoadingAdd to solve later

True or False: Eigenvalues of a Real Matrix Are Real Numbers

Problem 67

Answer the following questions regarding eigenvalues of a real matrix.

(a) True or False. If each entry of an $n \times n$ matrix $A$ is a real number, then the eigenvalues of $A$ are all real numbers.
(b) Find the eigenvalues of the matrix
\[B=\begin{bmatrix}
-2 & -1\\
5& 2
\end{bmatrix}.\]

(The Ohio State University, Linear Algebra Exam)

Read solution

LoadingAdd to solve later

Linear Independent Vectors, Invertible Matrix, and Expression of a Vector as a Linear Combinations

Problem 66

Consider the matrix
\[A=\begin{bmatrix}
1 & 2 & 1 \\
2 &5 &4 \\
1 & 1 & 0
\end{bmatrix}.\]


(a) Calculate the inverse matrix $A^{-1}$. If you think the matrix $A$ is not invertible, then explain why.


(b) Are the vectors
\[ \mathbf{A}_1=\begin{bmatrix}
1 \\
2 \\
1
\end{bmatrix}, \mathbf{A}_2=\begin{bmatrix}
2 \\
5 \\
1
\end{bmatrix},
\text{ and } \mathbf{A}_3=\begin{bmatrix}
1 \\
4 \\
0
\end{bmatrix}\] linearly independent?


(c) Write the vector $\mathbf{b}=\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix}$ as a linear combination of $\mathbf{A}_1$, $\mathbf{A}_2$, and $\mathbf{A}_3$.

(The Ohio State University, Linear Algebra Exam)

Read solution

LoadingAdd to solve later

Solving a System of Linear Equations By Using an Inverse Matrix

Problem 65

Consider the system of linear equations
\begin{align*}
x_1&= 2, \\
-2x_1 + x_2 &= 3, \\
5x_1-4x_2 +x_3 &= 2
\end{align*}

(a) Find the coefficient matrix and its inverse matrix.

(b) Using the inverse matrix, solve the system of linear equations.

(The Ohio State University, Linear Algebra Exam)

Read solution

LoadingAdd to solve later

A Square Root Matrix of a Symmetric Matrix

Problem 59

Answer the following two questions with justification.

(a) Does there exist a $2 \times 2$ matrix $A$ with $A^3=O$ but $A^2 \neq O$? Here $O$ denotes the $2 \times 2$ zero matrix.

(b) Does there exist a $3 \times 3$ real matrix $B$ such that $B^2=A$ where
\[A=\begin{bmatrix}
1 & -1 & 0 \\
-1 &2 &-1 \\
0 & -1 & 1
\end{bmatrix}\,\,\,\,?\]

(Princeton University Linear Algebra Exam)

Read solution

LoadingAdd to solve later

All the Eigenvectors of a Matrix Are Eigenvectors of Another Matrix

Problem 51

Let $A$ and $B$ be an $n \times n$ matrices.
Suppose that all the eigenvalues of $A$ are distinct and the matrices $A$ and $B$ commute, that is $AB=BA$.

Then prove that each eigenvector of $A$ is an eigenvector of $B$.

(It could be that each eigenvector is an eigenvector for distinct eigenvalues.)

Read solution

LoadingAdd to solve later

Find the Limit of a Matrix

Problem 50

Let
\[A=\begin{bmatrix}
\frac{1}{7} & \frac{3}{7} & \frac{3}{7} \\
\frac{3}{7} &\frac{1}{7} &\frac{3}{7} \\
\frac{3}{7} & \frac{3}{7} & \frac{1}{7}
\end{bmatrix}\] be $3 \times 3$ matrix. Find

\[\lim_{n \to \infty} A^n.\]

(Nagoya University Linear Algebra Exam)

Read solution

LoadingAdd to solve later

Calculate Determinants of Matrices

Problem 45

Calculate the determinants of the following $n\times n$ matrices.
\[A=\begin{bmatrix}
1 & 0 & 0 & \dots & 0 & 0 &1 \\
1 & 1 & 0 & \dots & 0 & 0 & 0 \\
0 & 1 & 1 & \dots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \dots & \dots & \ddots & \vdots \\
0 & 0 & 0 &\dots & 1 & 1 & 0\\
0 & 0 & 0 &\dots & 0 & 1 & 1
\end{bmatrix}\]

The entries of $A$ is $1$ at the diagonal entries, entries below the diagonal, and $(1, n)$-entry.
The other entries are zero.
\[B=\begin{bmatrix}
1 & 0 & 0 & \dots & 0 & 0 & -1 \\
-1 & 1 & 0 & \dots & 0 & 0 & 0 \\
0 & -1 & 1 & \dots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \dots & \dots & \ddots & \vdots \\
0 & 0 & 0 &\dots & -1 & 1 & 0\\
0 & 0 & 0 &\dots & 0 & -1 & 1
\end{bmatrix}.\]

The entries of $B$ is $1$ at the diagonal entries.
The entries below the diagonal and $(1,n)$-entry are $-1$.
The other entries are zero.

Read solution

LoadingAdd to solve later

Find a Matrix that Maps Given Vectors to Given Vectors

Problem 44

Suppose that a real matrix $A$ maps each of the following vectors
\[\mathbf{x}_1=\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix}, \mathbf{x}_2=\begin{bmatrix}
0 \\
1 \\
1
\end{bmatrix}, \mathbf{x}_3=\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix} \] into the vectors
\[\mathbf{y}_1=\begin{bmatrix}
1 \\
2 \\
0
\end{bmatrix}, \mathbf{y}_2=\begin{bmatrix}
-1 \\
0 \\
3
\end{bmatrix}, \mathbf{y}_3=\begin{bmatrix}
3 \\
1 \\
1
\end{bmatrix},\] respectively.
That is, $A\mathbf{x}_i=\mathbf{y}_i$ for $i=1,2,3$.
Find the matrix $A$.

(Kyoto University Exam)
Read solution

LoadingAdd to solve later

Symmetric Matrix and Its Eigenvalues, Eigenspaces, and Eigenspaces

Problem 42

Let $A$ be a $4\times 4$ real symmetric matrix. Suppose that $\mathbf{v}_1=\begin{bmatrix}
-1 \\
2 \\
0 \\
-1
\end{bmatrix}$ is an eigenvector corresponding to the eigenvalue $1$ of $A$.
Suppose that the eigenspace for the eigenvalue $2$ is $3$-dimensional.

(a) Find an orthonormal basis for the eigenspace of the eigenvalue $2$ of $A$.

(b) Find $A\mathbf{v}$, where
\[ \mathbf{v}=\begin{bmatrix}
1 \\
0 \\
0 \\
0
\end{bmatrix}.\]

 

(The University of Tokyo Linear Algebra Exam)

Read solution

LoadingAdd to solve later