The $(i, j)$ cofactor $C_{ij}$ of $A$ is defined to be
\[C_{ij}=(-1)^{ij}\det(M_{ij}),\]
where $M_{ij}$ is the $(i,j)$ minor matrix obtained from $A$ removing the $i$-th row and $j$-th column.
Then consider the $n\times n$ matrix $C=(C_{ij})$, and define the $n\times n$ matrix $\Adj(A)=C^{\trans}$.
The matrix $\Adj(A)$ is called the adjoint matrix of $A$.
When $A$ is invertible, then its inverse can be obtained by the formula
\[A^{-1}=\frac{1}{\det(A)}\Adj(A).\]
For each of the following matrices, determine whether it is invertible, and if so, then find the invertible matrix using the above formula.