The Normalizer of a Proper Subgroup of a Nilpotent Group is Strictly Bigger
Problem 523
Let $G$ be a nilpotent group and let $H$ be a proper subgroup of $G$.
Then prove that $H \subsetneq N_G(H)$, where $N_G(H)$ is the normalizer of $H$ in $G$.

Let $G$ be a nilpotent group and let $H$ be a proper subgroup of $G$.
Then prove that $H \subsetneq N_G(H)$, where $N_G(H)$ is the normalizer of $H$ in $G$.
Let $G$ be a nilpotent group and let $H$ be a subgroup such that $H$ is a subgroup in the center $Z(G)$ of $G$.
Suppose that the quotient $G/H$ is nilpotent.
Then show that $G$ is also nilpotent.