Determine whether there exists a nonsingular matrix $A$ if
\[A^4=ABA^2+2A^3,\]
where $B$ is the following matrix.
\[B=\begin{bmatrix}
-1 & 1 & -1 \\
0 &-1 &0 \\
2 & 1 & -4
\end{bmatrix}.\]

If such a nonsingular matrix $A$ exists, find the inverse matrix $A^{-1}$.

(The Ohio State University, Linear Algebra Final Exam Problem)

Determine the values of $x$ so that the matrix
\[A=\begin{bmatrix}
1 & 1 & x \\
1 &x &x \\
x & x & x
\end{bmatrix}\]
is invertible.
For those values of $x$, find the inverse matrix $A^{-1}$.

(a) Let $A$ be a $6\times 6$ matrix and suppose that $A$ can be written as
\[A=BC,\]
where $B$ is a $6\times 5$ matrix and $C$ is a $5\times 6$ matrix.

Prove that the matrix $A$ cannot be invertible.

(b) Let $A$ be a $2\times 2$ matrix and suppose that $A$ can be written as
\[A=BC,\]
where $B$ is a $ 2\times 3$ matrix and $C$ is a $3\times 2$ matrix.

(a) Find the inverse matrix of
\[A=\begin{bmatrix}
1 & 0 & 1 \\
1 &0 &0 \\
2 & 1 & 1
\end{bmatrix}\]
if it exists. If you think there is no inverse matrix of $A$, then give a reason.

(b) Find a nonsingular $2\times 2$ matrix $A$ such that
\[A^3=A^2B-3A^2,\]
where
\[B=\begin{bmatrix}
4 & 1\\
2& 6
\end{bmatrix}.\]
Verify that the matrix $A$ you obtained is actually a nonsingular matrix.

(The Ohio State University, Linear Algebra Midterm Exam Problem)

Let $\mathbf{v}_1$ and $\mathbf{v}_2$ be $2$-dimensional vectors and let $A$ be a $2\times 2$ matrix.

(a) Show that if $\mathbf{v}_1, \mathbf{v}_2$ are linearly dependent vectors, then the vectors $A\mathbf{v}_1, A\mathbf{v}_2$ are also linearly dependent.

(b) If $\mathbf{v}_1, \mathbf{v}_2$ are linearly independent vectors, can we conclude that the vectors $A\mathbf{v}_1, A\mathbf{v}_2$ are also linearly independent?

(c) If $\mathbf{v}_1, \mathbf{v}_2$ are linearly independent vectors and $A$ is nonsingular, then show that the vectors $A\mathbf{v}_1, A\mathbf{v}_2$ are also linearly independent.

Determine whether there exists a nonsingular matrix $A$ if
\[A^2=AB+2A,\]
where $B$ is the following matrix.
If such a nonsingular matrix $A$ exists, find the inverse matrix $A^{-1}$.

Determine conditions on the scalars $a, b$ so that the following set $S$ of vectors is linearly dependent.
\begin{align*}
S=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\},
\end{align*}
where
\[\mathbf{v}_1=\begin{bmatrix}
1 \\
3 \\
1
\end{bmatrix}, \mathbf{v}_2=\begin{bmatrix}
1 \\
a \\
4
\end{bmatrix}, \mathbf{v}_3=\begin{bmatrix}
0 \\
2 \\
b
\end{bmatrix}.\]
Read solution

Let $A$ be an $n\times n$ singular matrix.
Then prove that there exists a nonzero $n\times n$ matrix $B$ such that
\[AB=O,\]
where $O$ is the $n\times n$ zero matrix.

Let $A$ be an $n \times n$ matrix satisfying
\[A^2+c_1A+c_0I=O,\]
where $c_0, c_1$ are scalars, $I$ is the $n\times n$ identity matrix, and $O$ is the $n\times n$ zero matrix.

Prove that if $c_0\neq 0$, then the matrix $A$ is invertible (nonsingular).
How about the converse? Namely, is it true that if $c_0=0$, then the matrix $A$ is not invertible?

In this post, we explain how to diagonalize a matrix if it is diagonalizable.

As an example, we solve the following problem.

Diagonalize the matrix
\[A=\begin{bmatrix}
4 & -3 & -3 \\
3 &-2 &-3 \\
-1 & 1 & 2
\end{bmatrix}\]
by finding a nonsingular matrix $S$ and a diagonal matrix $D$ such that $S^{-1}AS=D$.

(Update 10/15/2017. A new example problem was added.) Read solution