# Tagged: norm of a vector

## Problem 687

For this problem, use the real vectors
$\mathbf{v}_1 = \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix} , \mathbf{v}_2 = \begin{bmatrix} 0 \\ 2 \\ -3 \end{bmatrix} , \mathbf{v}_3 = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix} .$ Suppose that $\mathbf{v}_4$ is another vector which is orthogonal to $\mathbf{v}_1$ and $\mathbf{v}_3$, and satisfying
$\mathbf{v}_2 \cdot \mathbf{v}_4 = -3 .$

Calculate the following expressions:

(a) $\mathbf{v}_1 \cdot \mathbf{v}_2$.

(b) $\mathbf{v}_3 \cdot \mathbf{v}_4$.

(c) $( 2 \mathbf{v}_1 + 3 \mathbf{v}_2 – \mathbf{v}_3 ) \cdot \mathbf{v}_4$.

(d) $\| \mathbf{v}_1 \| , \, \| \mathbf{v}_2 \| , \, \| \mathbf{v}_3 \|$.

(e) What is the distance between $\mathbf{v}_1$ and $\mathbf{v}_2$?

## Problem 202

Show that eigenvalues of a Hermitian matrix $A$ are real numbers.

(The Ohio State University Linear Algebra Exam Problem)

Let $A_1, A_2, \dots, A_m$ be $n\times n$ Hermitian matrices. Show that if
$A_1^2+A_2^2+\cdots+A_m^2=\calO,$ where $\calO$ is the $n \times n$ zero matrix, then we have $A_i=\calO$ for each $i=1,2, \dots, m$.