# Tagged: norm

## Problem 534

Let $I$ be a nonzero ideal of the ring of Gaussian integers $\Z[i]$.

Prove that the quotient ring $\Z[i]/I$ is finite.

## Problem 519

Prove that the quadratic integer ring $\Z[\sqrt{5}]$ is not a Unique Factorization Domain (UFD).

## Problem 518

Prove that the quadratic integer ring $\Z[\sqrt{-5}]$ is not a Unique Factorization Domain (UFD).

## Problem 503

Prove that the ring of integers
$\Z[\sqrt{2}]=\{a+b\sqrt{2} \mid a, b \in \Z\}$ of the field $\Q(\sqrt{2})$ is a Euclidean Domain.

## Problem 419

(a) Let $A$ be a real orthogonal $n\times n$ matrix. Prove that the length (magnitude) of each eigenvalue of $A$ is $1$.

(b) Let $A$ be a real orthogonal $3\times 3$ matrix and suppose that the determinant of $A$ is $1$. Then prove that $A$ has $1$ as an eigenvalue.

## Problem 381

Consider the matrix
$A=\begin{bmatrix} 3/2 & 2\\ -1& -3/2 \end{bmatrix} \in M_{2\times 2}(\R).$

(a) Find the eigenvalues and corresponding eigenvectors of $A$.

(b) Show that for $\mathbf{v}=\begin{bmatrix} 1 \\ 0 \end{bmatrix}\in \R^2$, we can choose $n$ large enough so that the length $\|A^n\mathbf{v}\|$ is as small as we like.

(University of California, Berkeley, Linear Algebra Final Exam Problem)

## Problem 355

Let $\mathbf{a}, \mathbf{b}$ be vectors in $\R^n$.

Prove the Cauchy-Schwarz inequality:
$|\mathbf{a}\cdot \mathbf{b}|\leq \|\mathbf{a}\|\,\|\mathbf{b}\|.$

## Problem 224

In the ring
$\Z[\sqrt{2}]=\{a+\sqrt{2}b \mid a, b \in \Z\},$ show that $5$ is a prime element but $7$ is not a prime element.

## Problem 202

Show that eigenvalues of a Hermitian matrix $A$ are real numbers.

(The Ohio State University Linear Algebra Exam Problem)

## Problem 188

Denote by $i$ the square root of $-1$.
Let
$R=\Z[i]=\{a+ib \mid a, b \in \Z \}$ be the ring of Gaussian integers.
We define the norm $N:\Z[i] \to \Z$ by sending $\alpha=a+ib$ to
$N(\alpha)=\alpha \bar{\alpha}=a^2+b^2.$

Here $\bar{\alpha}$ is the complex conjugate of $\alpha$.
Then show that an element $\alpha \in R$ is a unit if and only if the norm $N(\alpha)=\pm 1$.
Also, determine all the units of the ring $R=\Z[i]$ of Gaussian integers.