Tagged: norm

Eigenvalues of Orthogonal Matrices Have Length 1. Every $3\times 3$ Orthogonal Matrix Has 1 as an Eigenvalue

Problem 419

(a) Let $A$ be a real orthogonal $n\times n$ matrix. Prove that the length (magnitude) of each eigenvalue of $A$ is $1$.


(b) Let $A$ be a real orthogonal $3\times 3$ matrix and suppose that the determinant of $A$ is $1$. Then prove that $A$ has $1$ as an eigenvalue.

 
Read solution

LoadingAdd to solve later

Prove that the Length $\|A^n\mathbf{v}\|$ is As Small As We Like.

Problem 381

Consider the matrix
\[A=\begin{bmatrix}
3/2 & 2\\
-1& -3/2
\end{bmatrix} \in M_{2\times 2}(\R).\]

(a) Find the eigenvalues and corresponding eigenvectors of $A$.

(b) Show that for $\mathbf{v}=\begin{bmatrix}
1 \\
0
\end{bmatrix}\in \R^2$, we can choose $n$ large enough so that the length $\|A^n\mathbf{v}\|$ is as small as we like.

(University of California, Berkeley, Linear Algebra Final Exam Problem)
 
Read solution

LoadingAdd to solve later

Ring of Gaussian Integers and Determine its Unit Elements

Problem 188

Denote by $i$ the square root of $-1$.
Let
\[R=\Z[i]=\{a+ib \mid a, b \in \Z \}\] be the ring of Gaussian integers.
We define the norm $N:\Z[i] \to \Z$ by sending $\alpha=a+ib$ to
\[N(\alpha)=\alpha \bar{\alpha}=a^2+b^2.\]

Here $\bar{\alpha}$ is the complex conjugate of $\alpha$.
Then show that an element $\alpha \in R$ is a unit if and only if the norm $N(\alpha)=\pm 1$.
Also, determine all the units of the ring $R=\Z[i]$ of Gaussian integers.

 
Read solution

LoadingAdd to solve later