Tagged: null space of a linear transformation

Problem 680

Let $C([-1, 1])$ denote the vector space of real-valued functions on the interval $[-1, 1]$. Define the vector subspace
$W = \{ f \in C([-1, 1]) \mid f(0) = 0 \}.$

Define the map $T : C([-1, 1]) \rightarrow W$ by $T(f)(x) = f(x) – f(0)$. Determine if $T$ is a linear map. If it is, determine its nullspace and range.

Problem 592

Let $\R^n$ be an inner product space with inner product $\langle \mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{\trans}\mathbf{y}$ for $\mathbf{x}, \mathbf{y}\in \R^n$.

A linear transformation $T:\R^n \to \R^n$ is called orthogonal transformation if for all $\mathbf{x}, \mathbf{y}\in \R^n$, it satisfies
$\langle T(\mathbf{x}), T(\mathbf{y})\rangle=\langle\mathbf{x}, \mathbf{y} \rangle.$

Prove that if $T:\R^n\to \R^n$ is an orthogonal transformation, then $T$ is an isomorphism.

Problem 555

Let $U$ and $V$ be vector spaces over a scalar field $\F$.
Define the map $T:U\to V$ by $T(\mathbf{u})=\mathbf{0}_V$ for each vector $\mathbf{u}\in U$.

(a) Prove that $T:U\to V$ is a linear transformation.
(Hence, $T$ is called the zero transformation.)

(b) Determine the null space $\calN(T)$ and the range $\calR(T)$ of $T$.

Problem 541

Let $U$ and $V$ be finite dimensional vector spaces over a scalar field $\F$.
Consider a linear transformation $T:U\to V$.

Prove that if $\dim(U) > \dim(V)$, then $T$ cannot be injective (one-to-one).