Find the Nullspace and Range of the Linear Transformation $T(f)(x) = f(x)-f(0)$
Problem 680
Let $C([-1, 1])$ denote the vector space of real-valued functions on the interval $[-1, 1]$. Define the vector subspace
\[W = \{ f \in C([-1, 1]) \mid f(0) = 0 \}.\]
Define the map $T : C([-1, 1]) \rightarrow W$ by $T(f)(x) = f(x) – f(0)$. Determine if $T$ is a linear map. If it is, determine its nullspace and range.
