# Tagged: null space

## Problem 311

Let $A$ and $B$ be $n\times n$ matrices. Then prove that
$\calN(A)\cap \calN(B) \subset \calN(A+B),$ where $\calN(A)$ is the null space (kernel) of the matrix $A$.

## Problem 303

Let $A$ be a real $7\times 3$ matrix such that its null space is spanned by the vectors
$\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \text{ and } \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}.$ Then find the rank of the matrix $A$.

(Purdue University, Linear Algebra Final Exam Problem)

## Problem 270

Let
$A=\begin{bmatrix} 4 & 1\\ 3& 2 \end{bmatrix}$ and consider the following subset $V$ of the 2-dimensional vector space $\R^2$.
$V=\{\mathbf{x}\in \R^2 \mid A\mathbf{x}=5\mathbf{x}\}.$

(a) Prove that the subset $V$ is a subspace of $\R^2$.

(b) Find a basis for $V$ and determine the dimension of $V$.

## Problem 260

Let $A=\begin{bmatrix} 1 & 1 & 2 \\ 2 &2 &4 \\ 2 & 3 & 5 \end{bmatrix}.$

(a) Find a matrix $B$ in reduced row echelon form such that $B$ is row equivalent to the matrix $A$.

(b) Find a basis for the null space of $A$.

(c) Find a basis for the range of $A$ that consists of columns of $A$. For each columns, $A_j$ of $A$ that does not appear in the basis, express $A_j$ as a linear combination of the basis vectors.

(d) Exhibit a basis for the row space of $A$.

## Problem 252

Let $W$ be the subset of $\R^3$ defined by
$W=\left \{ \mathbf{x}=\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\in \R^3 \quad \middle| \quad 5x_1-2x_2+x_3=0 \right \}.$ Exhibit a $1\times 3$ matrix $A$ such that $W=\calN(A)$, the null space of $A$.
Conclude that the subset $W$ is a subspace of $\R^3$.

## Problem 242

Let
$A=\begin{bmatrix} 1 & 2 & 2 \\ 2 &3 &2 \\ -1 & -3 & -4 \end{bmatrix} \text{ and } B=\begin{bmatrix} 1 & 2 & 2 \\ 2 &3 &2 \\ 5 & 3 & 3 \end{bmatrix}.$

Determine the null spaces of matrices $A$ and $B$.

## Problem 222

Suppose that $n\times n$ matrices $A$ and $B$ are similar.

Then show that the nullity of $A$ is equal to the nullity of $B$.
In other words, the dimension of the null space (kernel) $\calN(A)$ of $A$ is the same as the dimension of the null space $\calN(B)$ of $B$.

## Problem 217

Let $A, B, C$ are $2\times 2$ diagonalizable matrices.

The graphs of characteristic polynomials of $A, B, C$ are shown below. The red graph is for $A$, the blue one for $B$, and the green one for $C$.

From this information, determine the rank of the matrices $A, B,$ and $C$.

Graphs of characteristic polynomials

## Problem 211

In this post, we explain how to diagonalize a matrix if it is diagonalizable.

As an example, we solve the following problem.

Diagonalize the matrix
$A=\begin{bmatrix} 4 & -3 & -3 \\ 3 &-2 &-3 \\ -1 & 1 & 2 \end{bmatrix}$ by finding a nonsingular matrix $S$ and a diagonal matrix $D$ such that $S^{-1}AS=D$.

(Update 10/15/2017. A new example problem was added.)

## Problem 200

Let
$A=\begin{bmatrix} 5 & 2 & -1 \\ 2 &2 &2 \\ -1 & 2 & 5 \end{bmatrix}.$

Pick your favorite number $a$. Find the dimension of the null space of the matrix $A-aI$, where $I$ is the $3\times 3$ identity matrix.

Your score of this problem is equal to that dimension times five.

(The Ohio State University Linear Algebra Practice Problem)

## Problem 164

Let $T:\R^4 \to \R^3$ be a linear transformation defined by
$T\left (\, \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \,\right) = \begin{bmatrix} x_1+2x_2+3x_3-x_4 \\ 3x_1+5x_2+8x_3-2x_4 \\ x_1+x_2+2x_3 \end{bmatrix}.$

(a) Find a matrix $A$ such that $T(\mathbf{x})=A\mathbf{x}$.

(b) Find a basis for the null space of $T$.

(c) Find the rank of the linear transformation $T$.

(The Ohio State University Linear Algebra Exam Problem)

## Problem 155

Let $A$ be an $m \times n$ matrix.
Let $\calN(A)$ be the null space of $A$. Suppose that $\mathbf{u} \in \calN(A)$ and $\mathbf{v} \in \calN(A)$.
Let $\mathbf{w}=3\mathbf{u}-5\mathbf{v}$.

Then find $A\mathbf{w}$.

## Problem 154

Define the map $T:\R^2 \to \R^3$ by $T \left ( \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right )=\begin{bmatrix} x_1-x_2 \\ x_1+x_2 \\ x_2 \end{bmatrix}$.

(a) Show that $T$ is a linear transformation.

(b) Find a matrix $A$ such that $T(\mathbf{x})=A\mathbf{x}$ for each $\mathbf{x} \in \R^2$.

(c) Describe the null space (kernel) and the range of $T$ and give the rank and the nullity of $T$.

## Problem 140

Let $A$ be an $m\times n$ matrix. The nullspace of $A$ is denoted by $\calN(A)$.
The dimension of the nullspace of $A$ is called the nullity of $A$.
Prove the followings.

(a) $\calN(A)=\calN(A^{\trans}A)$.

(b) $\rk(A)=\rk(A^{\trans}A)$.

## Problem 132

Let
$A=\begin{bmatrix} 1 & 1 & 0 \\ 1 &1 &0 \end{bmatrix}$ be a matrix.

Find a basis of the null space of the matrix $A$.

(Remark: a null space is also called a kernel.)

## Problem 121

Let $A$ be an $m \times n$ real matrix. Then the null space $\calN(A)$ of $A$ is defined by
$\calN(A)=\{ \mathbf{x}\in \R^n \mid A\mathbf{x}=\mathbf{0}_m\}.$ That is, the null space is the set of solutions to the homogeneous system $A\mathbf{x}=\mathbf{0}_m$.

Prove that the null space $\calN(A)$ is a subspace of the vector space $\R^n$.
(Note that the null space is also called the kernel of $A$.)

## If the Kernel of a Matrix $A$ is Trivial, then $A^T A$ is Invertible
Let $A$ be an $m \times n$ real matrix.
Then the kernel of $A$ is defined as $\ker(A)=\{ x\in \R^n \mid Ax=0 \}$.
The kernel is also called the null space of $A$.
Suppose that $A$ is an $m \times n$ real matrix such that $\ker(A)=0$. Prove that $A^{\trans}A$ is invertible.