# Tagged: order

## Problem 522

Let $G$ be an abelian group and let $H$ be the subset of $G$ consisting of all elements of $G$ of finite order. That is,
$H=\{ a\in G \mid \text{the order of a is finite}\}.$

Prove that $H$ is a subgroup of $G$.

## Problem 497

Let $G$ be an abelian group.
Let $a$ and $b$ be elements in $G$ of order $m$ and $n$, respectively.
Prove that there exists an element $c$ in $G$ such that the order of $c$ is the least common multiple of $m$ and $n$.

Also determine whether the statement is true if $G$ is a non-abelian group.

## Problem 354

Let $G$ be a group. Let $a$ and $b$ be elements of $G$.
If the order of $a, b$ are $m, n$ respectively, then is it true that the order of the product $ab$ divides $mn$? If so give a proof. If not, give a counterexample.

## Problem 326

Prove that if $G$ is a finite group of even order, then the number of elements of $G$ of order $2$ is odd.

## Problem 307

Let $A$ be an abelian group and let $T(A)$ denote the set of elements of $A$ that have finite order.

(a) Prove that $T(A)$ is a subgroup of $A$.

(The subgroup $T(A)$ is called the torsion subgroup of the abelian group $A$ and elements of $T(A)$ are called torsion elements.)

(b) Prove that the quotient group $G=A/T(A)$ is a torsion-free abelian group. That is, the only element of $G$ that has finite order is the identity element.

## Problem 212

Let $G$ be a group. Suppose that the order of nonidentity element of $G$ is $2$.
Then show that $G$ is an abelian group.

## Problem 205

Let $G$ be an abelian group with the identity element $1$. Let $a, b$ be elements of $G$ with order $m$ and $n$, respectively.
If $m$ and $n$ are relatively prime, then show that the order of the element $ab$ is $mn$.