Tagged: orthogonal complement

Projection to the subspace spanned by a vector

Problem 60

Let $T: \R^3 \to \R^3$ be the linear transformation given by orthogonal projection to the line spanned by $\begin{bmatrix}
1 \\
2 \\
2
\end{bmatrix}$.

(a) Find a formula for $T(\mathbf{x})$ for $\mathbf{x}\in \R^3$.

(b) Find a basis for the image subspace of $T$.

(c) Find a basis for the kernel subspace of $T$.

(d) Find the $3 \times 3$ matrix for $T$ with respect to the standard basis for $\R^3$.

(e) Find a basis for the orthogonal complement of the kernel of $T$. (The orthogonal complement is the subspace of all vectors perpendicular to a given subspace, in this case, the kernel.)

(f) Find a basis for the orthogonal complement of the image of $T$.

(g) What is the rank of $T$?

(Johns Hopkins University Exam)

Read solution

LoadingAdd to solve later

If the Kernel of a Matrix $A$ is Trivial, then $A^T A$ is Invertible

Problem 38

Let $A$ be an $m \times n$ real matrix.
Then the kernel of $A$ is defined as $\ker(A)=\{ x\in \R^n \mid Ax=0 \}$.

The kernel is also called the null space of $A$.
Suppose that $A$ is an $m \times n$ real matrix such that $\ker(A)=0$. Prove that $A^{\trans}A$ is invertible.

(Stanford University Linear Algebra Exam)

Read solution

LoadingAdd to solve later