Let $A$ be a real symmetric $n\times n$ matrix with $0$ as a simple eigenvalue (that is, the algebraic multiplicity of the eigenvalue $0$ is $1$), and let us fix a vector $\mathbf{v}\in \R^n$.

(a) Prove that for sufficiently small positive real $\epsilon$, the equation
\[A\mathbf{x}+\epsilon\mathbf{x}=\mathbf{v}\]
has a unique solution $\mathbf{x}=\mathbf{x}(\epsilon) \in \R^n$.

(b) Evaluate
\[\lim_{\epsilon \to 0^+} \epsilon \mathbf{x}(\epsilon)\]
in terms of $\mathbf{v}$, the eigenvectors of $A$, and the inner product $\langle\, ,\,\rangle$ on $\R^n$.

(University of California, Berkeley, Linear Algebra Qualifying Exam)

Let $A$ be an $n\times n$ real symmetric matrix.
Prove that there exists an eigenvalue $\lambda$ of $A$ such that for any vector $\mathbf{v}\in \R^n$, we have the inequality
\[\mathbf{v}\cdot A\mathbf{v} \leq \lambda \|\mathbf{v}\|^2.\]

(a) Is it true that $A$ must commute with its transpose?

(b) Suppose that the columns of $A$ (considered as vectors) form an orthonormal set.
Is it true that the rows of $A$ must also form an orthonormal set?

(University of California, Berkeley, Linear Algebra Qualifying Exam)

For a real number $0\leq \theta \leq \pi$, we define the real $3\times 3$ matrix $A$ by
\[A=\begin{bmatrix}
\cos\theta & -\sin\theta & 0 \\
\sin\theta &\cos\theta &0 \\
0 & 0 & 1
\end{bmatrix}.\]

Answer the following two questions with justification.

(a) Does there exist a $2 \times 2$ matrix $A$ with $A^3=O$ but $A^2 \neq O$? Here $O$ denotes the $2 \times 2$ zero matrix.

(b) Does there exist a $3 \times 3$ real matrix $B$ such that $B^2=A$ where
\[A=\begin{bmatrix}
1 & -1 & 0 \\
-1 &2 &-1 \\
0 & -1 & 1
\end{bmatrix}\,\,\,\,?\]