# Tagged: orthogonal matrix

## Problem 611

An $n\times n$ matrix $A$ is called orthogonal if $A^{\trans}A=I$.
Let $V$ be the vector space of all real $2\times 2$ matrices.

Consider the subset
$W:=\{A\in V \mid \text{A is an orthogonal matrix}\}.$ Prove or disprove that $W$ is a subspace of $V$.

## Problem 471

Let $A$ be a $3\times 3$ real orthogonal matrix with $\det(A)=1$.

(a) If $\frac{-1+\sqrt{3}i}{2}$ is one of the eigenvalues of $A$, then find the all the eigenvalues of $A$.

(b) Let
$A^{100}=aA^2+bA+cI,$ where $I$ is the $3\times 3$ identity matrix.
Using the Cayley-Hamilton theorem, determine $a, b, c$.

(Kyushu University, Linear Algebra Exam Problem)

## Problem 468

Let $A$ be an $n\times n$ real skew-symmetric matrix.

(a) Prove that the matrices $I-A$ and $I+A$ are nonsingular.

(b) Prove that
$B=(I-A)(I+A)^{-1}$ is an orthogonal matrix.

## Problem 457

Let $A$ be a real symmetric $n\times n$ matrix with $0$ as a simple eigenvalue (that is, the algebraic multiplicity of the eigenvalue $0$ is $1$), and let us fix a vector $\mathbf{v}\in \R^n$.

(a) Prove that for sufficiently small positive real $\epsilon$, the equation
$A\mathbf{x}+\epsilon\mathbf{x}=\mathbf{v}$ has a unique solution $\mathbf{x}=\mathbf{x}(\epsilon) \in \R^n$.

(b) Evaluate
$\lim_{\epsilon \to 0^+} \epsilon \mathbf{x}(\epsilon)$ in terms of $\mathbf{v}$, the eigenvectors of $A$, and the inner product $\langle\, ,\,\rangle$ on $\R^n$.

(University of California, Berkeley, Linear Algebra Qualifying Exam)

## Problem 451

Let $A$ be an $n\times n$ real symmetric matrix.
Prove that there exists an eigenvalue $\lambda$ of $A$ such that for any vector $\mathbf{v}\in \R^n$, we have the inequality
$\mathbf{v}\cdot A\mathbf{v} \leq \lambda \|\mathbf{v}\|^2.$

## Problem 419

(a) Let $A$ be a real orthogonal $n\times n$ matrix. Prove that the length (magnitude) of each eigenvalue of $A$ is $1$.

(b) Let $A$ be a real orthogonal $3\times 3$ matrix and suppose that the determinant of $A$ is $1$. Then prove that $A$ has $1$ as an eigenvalue.

## Problem 317

Suppose that $A$ is a real $n\times n$ matrix.

(a) Is it true that $A$ must commute with its transpose?

(b) Suppose that the columns of $A$ (considered as vectors) form an orthonormal set.
Is it true that the rows of $A$ must also form an orthonormal set?

(University of California, Berkeley, Linear Algebra Qualifying Exam)

## Problem 218

For a real number $0\leq \theta \leq \pi$, we define the real $3\times 3$ matrix $A$ by
$A=\begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta &\cos\theta &0 \\ 0 & 0 & 1 \end{bmatrix}.$

(a) Find the determinant of the matrix $A$.

(b) Show that $A$ is an orthogonal matrix.

(c) Find the eigenvalues of $A$.

## Problem 214

Find the inverse matrix of the matrix
$A=\begin{bmatrix} \frac{2}{7} & \frac{3}{7} & \frac{6}{7} \\[6 pt] \frac{6}{7} &\frac{2}{7} &-\frac{3}{7} \\[6pt] -\frac{3}{7} & \frac{6}{7} & -\frac{2}{7} \end{bmatrix}.$

## Problem 210

Let $A$ be an $n\times n$ matrix with real number entries.

Show that if $A$ is diagonalizable by an orthogonal matrix, then $A$ is a symmetric matrix.

## Problem 63

Let $A$ be an $n\times n$ real symmetric matrix whose eigenvalues are all non-negative real numbers.

Show that there is an $n \times n$ real matrix $B$ such that $B^2=A$.

## Problem 59

Answer the following two questions with justification.

(a) Does there exist a $2 \times 2$ matrix $A$ with $A^3=O$ but $A^2 \neq O$? Here $O$ denotes the $2 \times 2$ zero matrix.

(b) Does there exist a $3 \times 3$ real matrix $B$ such that $B^2=A$ where
$A=\begin{bmatrix} 1 & -1 & 0 \\ -1 &2 &-1 \\ 0 & -1 & 1 \end{bmatrix}\,\,\,\,?$

(Princeton University Linear Algebra Exam)