Tagged: orthogonal vectors

Dot Product, Lengths, and Distances of Complex Vectors

Problem 689

For this problem, use the complex vectors
\[ \mathbf{w}_1 = \begin{bmatrix} 1 + i \\ 1 – i \\ 0 \end{bmatrix} , \, \mathbf{w}_2 = \begin{bmatrix} -i \\ 0 \\ 2 – i \end{bmatrix} , \, \mathbf{w}_3 = \begin{bmatrix} 2+i \\ 1 – 3i \\ 2i \end{bmatrix} . \]

Suppose $\mathbf{w}_4$ is another complex vector which is orthogonal to both $\mathbf{w}_2$ and $\mathbf{w}_3$, and satisfies $\mathbf{w}_1 \cdot \mathbf{w}_4 = 2i$ and $\| \mathbf{w}_4 \| = 3$.

Calculate the following expressions:

(a) $ \mathbf{w}_1 \cdot \mathbf{w}_2 $.

(b) $ \mathbf{w}_1 \cdot \mathbf{w}_3 $.

(c) $((2+i)\mathbf{w}_1 – (1+i)\mathbf{w}_2 ) \cdot \mathbf{w}_4$.

(d) $\| \mathbf{w}_1 \| , \| \mathbf{w}_2 \|$, and $\| \mathbf{w}_3 \|$.

(e) $\| 3 \mathbf{w}_4 \|$.

(f) What is the distance between $\mathbf{w}_2$ and $\mathbf{w}_3$?

 
Read solution

LoadingAdd to solve later

Eigenvalues and Eigenvectors of The Cross Product Linear Transformation

Problem 593

We fix a nonzero vector $\mathbf{a}$ in $\R^3$ and define a map $T:\R^3\to \R^3$ by
\[T(\mathbf{v})=\mathbf{a}\times \mathbf{v}\] for all $\mathbf{v}\in \R^3$.
Here the right-hand side is the cross product of $\mathbf{a}$ and $\mathbf{v}$.

(a) Prove that $T:\R^3\to \R^3$ is a linear transformation.

(b) Determine the eigenvalues and eigenvectors of $T$.

 
Read solution

LoadingAdd to solve later