Tagged: positive eigenvalue

Positive definite Real Symmetric Matrix and its Eigenvalues

Problem 396

A real symmetric $n \times n$ matrix $A$ is called positive definite if
\[\mathbf{x}^{\trans}A\mathbf{x}>0\] for all nonzero vectors $\mathbf{x}$ in $\R^n$.

(a) Prove that the eigenvalues of a real symmetric positive-definite matrix $A$ are all positive.

(b) Prove that if eigenvalues of a real symmetric matrix $A$ are all positive, then $A$ is positive-definite.

Read solution

LoadingAdd to solve later

Transpose of a Matrix and Eigenvalues and Related Questions

Problem 12

Let $A$ be an $n \times n$ real matrix. Prove the followings.

(a) The matrix $AA^{\trans}$ is a symmetric matrix.

(b) The set of eigenvalues of $A$ and the set of eigenvalues of $A^{\trans}$ are equal.

(c) The matrix $AA^{\trans}$ is non-negative definite.

(An $n\times n$ matrix $B$ is called non-negative definite if for any $n$ dimensional vector $\mathbf{x}$, we have $\mathbf{x}^{\trans}B \mathbf{x} \geq 0$.)

(d) All the eigenvalues of $AA^{\trans}$ is non-negative.

Read solution

LoadingAdd to solve later