# Tagged: power of a matrix

## Problem 696

Let
$A=\begin{bmatrix} -4 & -6 & -12 \\ -2 &-1 &-4 \\ 2 & 3 & 6 \end{bmatrix}, \quad \mathbf{u}=\begin{bmatrix} 6 \\ 5 \\ -3 \end{bmatrix}, \quad \mathbf{v}=\begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}, \quad \text{ and } \mathbf{w}=\begin{bmatrix} -2 \\ -1 \\ 1 \end{bmatrix}.$

(a) Express the vector $\mathbf{u}$ as a linear combination of $\mathbf{v}$ and $\mathbf{w}$.

(b) Compute $A^5\mathbf{v}$.

(c) Compute $A^5\mathbf{w}$.

(d) Compute $A^5\mathbf{u}$.

## Problem 583

Consider the $2\times 2$ complex matrix
$A=\begin{bmatrix} a & b-a\\ 0& b \end{bmatrix}.$

(a) Find the eigenvalues of $A$.

(b) For each eigenvalue of $A$, determine the eigenvectors.

(c) Diagonalize the matrix $A$.

(d) Using the result of the diagonalization, compute and simplify $A^k$ for each positive integer $k$.

## Problem 471

Let $A$ be a $3\times 3$ real orthogonal matrix with $\det(A)=1$.

(a) If $\frac{-1+\sqrt{3}i}{2}$ is one of the eigenvalues of $A$, then find the all the eigenvalues of $A$.

(b) Let
$A^{100}=aA^2+bA+cI,$ where $I$ is the $3\times 3$ identity matrix.
Using the Cayley-Hamilton theorem, determine $a, b, c$.

(Kyushu University, Linear Algebra Exam Problem)

## Problem 466

Let
$A=\begin{bmatrix} 1 & 2\\ 4& 3 \end{bmatrix}.$

(a) Find eigenvalues of the matrix $A$.

(b) Find eigenvectors for each eigenvalue of $A$.

(c) Diagonalize the matrix $A$. That is, find an invertible matrix $S$ and a diagonal matrix $D$ such that $S^{-1}AS=D$.

(d) Diagonalize the matrix $A^3-5A^2+3A+I$, where $I$ is the $2\times 2$ identity matrix.

(e) Calculate $A^{100}$. (You do not have to compute $5^{100}$.)

(f) Calculate
$(A^3-5A^2+3A+I)^{100}.$ Let $w=2^{100}$. Express the solution in terms of $w$.

## Problem 383

Let
$A=\begin{bmatrix} 1 & 1 & 1 \\ 0 &0 &1 \\ 0 & 0 & 1 \end{bmatrix}$ be a $3\times 3$ matrix. Then find the formula for $A^n$ for any positive integer $n$.

## Problem 373

Let $A$ be a $3\times 3$ matrix. Suppose that $A$ has eigenvalues $2$ and $-1$, and suppose that $\mathbf{u}$ and $\mathbf{v}$ are eigenvectors corresponding to $2$ and $-1$, respectively, where
$\mathbf{u}=\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \text{ and } \mathbf{v}=\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}.$ Then compute $A^5\mathbf{w}$, where
$\mathbf{w}=\begin{bmatrix} 7 \\ 2 \\ -3 \end{bmatrix}.$

## Problem 8

Let $A= \begin{bmatrix} 1 & 2\\ 2& 1 \end{bmatrix}$.
Compute $A^n$ for any $n \in \N$.