# Tagged: principal ideal

## Problem 535

(a) Prove that every prime ideal of a Principal Ideal Domain (PID) is a maximal ideal.

(b) Prove that a quotient ring of a PID by a prime ideal is a PID.

## Problem 333

Let $R$ be an integral domain and let $S=R[t]$ be the polynomial ring in $t$ over $R$. Let $n$ be a positive integer.

Prove that the polynomial
$f(x)=x^n-t$ in the ring $S[x]$ is irreducible in $S[x]$.

## Problem 228

Let $R$ be a commutative ring with $1$. Show that if $R$ is an integral domain, then the characteristic of $R$ is either $0$ or a prime number $p$.

## Problem 224

In the ring
$\Z[\sqrt{2}]=\{a+\sqrt{2}b \mid a, b \in \Z\},$ show that $5$ is a prime element but $7$ is not a prime element.

## Problem 198

Let $R$ be a commutative ring with $1$. Prove that the principal ideal $(x)$ generated by the element $x$ in the polynomial ring $R[x]$ is a prime ideal if and only if $R$ is an integral domain.

Prove also that the ideal $(x)$ is a maximal ideal if and only if $R$ is a field.