Abelian Normal Subgroup, Intersection, and Product of Groups
Problem 195
Let $G$ be a group and let $A$ be an abelian subgroup of $G$ with $A \triangleleft G$.
(That is, $A$ is a normal subgroup of $G$.)
If $B$ is any subgroup of $G$, then show that
\[A \cap B \triangleleft AB.\]