Tagged: rank of a matrix

Find a Row-Equivalent Matrix which is in Reduced Row Echelon Form and Determine the Rank

Problem 643

For each of the following matrices, find a row-equivalent matrix which is in reduced row echelon form. Then determine the rank of each matrix.

(a) $A = \begin{bmatrix} 1 & 3 \\ -2 & 2 \end{bmatrix}$.

(b) $B = \begin{bmatrix} 2 & 6 & -2 \\ 3 & -2 & 8 \end{bmatrix}$.

(c) $C = \begin{bmatrix} 2 & -2 & 4 \\ 4 & 1 & -2 \\ 6 & -1 & 2 \end{bmatrix}$.

(d) $D = \begin{bmatrix} -2 \\ 3 \\ 1 \end{bmatrix}$.

(e) $E = \begin{bmatrix} -2 & 3 & 1 \end{bmatrix}$.

 
Read solution

LoadingAdd to solve later

Hyperplane in $n$-Dimensional Space Through Origin is a Subspace

Problem 352

A hyperplane in $n$-dimensional vector space $\R^n$ is defined to be the set of vectors
\[\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix}\in \R^n\] satisfying the linear equation of the form
\[a_1x_1+a_2x_2+\cdots+a_nx_n=b,\] where $a_1, a_2, \dots, a_n$ (at least one of $a_1, a_2, \dots, a_n$ is nonzero) and $b$ are real numbers.
Here at least one of $a_1, a_2, \dots, a_n$ is nonzero.

Consider the hyperplane $P$ in $\R^n$ described by the linear equation
\[a_1x_1+a_2x_2+\cdots+a_nx_n=0,\] where $a_1, a_2, \dots, a_n$ are some fixed real numbers and not all of these are zero.
(The constant term $b$ is zero.)

Then prove that the hyperplane $P$ is a subspace of $R^{n}$ of dimension $n-1$.

 
Read solution

LoadingAdd to solve later

Linear Transformation to 1-Dimensional Vector Space and Its Kernel

Problem 329

Let $n$ be a positive integer. Let $T:\R^n \to \R$ be a non-zero linear transformation.
Prove the followings.

(a) The nullity of $T$ is $n-1$. That is, the dimension of the nullspace of $T$ is $n-1$.

(b) Let $B=\{\mathbf{v}_1, \cdots, \mathbf{v}_{n-1}\}$ be a basis of the nullspace $\calN(T)$ of $T$.
Let $\mathbf{w}$ be the $n$-dimensional vector that is not in $\calN(T)$. Then
\[B’=\{\mathbf{v}_1, \cdots, \mathbf{v}_{n-1}, \mathbf{w}\}\] is a basis of $\R^n$.

(c) Each vector $\mathbf{u}\in \R^n$ can be expressed as
\[\mathbf{u}=\mathbf{v}+\frac{T(\mathbf{u})}{T(\mathbf{w})}\mathbf{w}\] for some vector $\mathbf{v}\in \calN(T)$.

 
Read solution

LoadingAdd to solve later

Given a Spanning Set of the Null Space of a Matrix, Find the Rank

Problem 303

Let $A$ be a real $7\times 3$ matrix such that its null space is spanned by the vectors
\[\begin{bmatrix}
1 \\
2 \\
0
\end{bmatrix}, \begin{bmatrix}
2 \\
1 \\
0
\end{bmatrix}, \text{ and } \begin{bmatrix}
1 \\
-1 \\
0
\end{bmatrix}.\] Then find the rank of the matrix $A$.

(Purdue University, Linear Algebra Final Exam Problem)
 
Read solution

LoadingAdd to solve later

The Possibilities For the Number of Solutions of Systems of Linear Equations that Have More Equations than Unknowns

Problem 295

Determine all possibilities for the number of solutions of each of the system of linear equations described below.

(a) A system of $5$ equations in $3$ unknowns and it has $x_1=0, x_2=-3, x_3=1$ as a solution.

(b) A homogeneous system of $5$ equations in $4$ unknowns and the rank of the system is $4$.
 

(The Ohio State University, Linear Algebra Midterm Exam Problem)
Read solution

LoadingAdd to solve later

Given Graphs of Characteristic Polynomial of Diagonalizable Matrices, Determine the Rank of Matrices

Problem 217

Let $A, B, C$ are $2\times 2$ diagonalizable matrices.

The graphs of characteristic polynomials of $A, B, C$ are shown below. The red graph is for $A$, the blue one for $B$, and the green one for $C$.

From this information, determine the rank of the matrices $A, B,$ and $C$.

Graphs of characteristic polynomials

Graphs of characteristic polynomials

 
Read solution

LoadingAdd to solve later

Range, Null Space, Rank, and Nullity of a Linear Transformation from $\R^2$ to $\R^3$

Problem 154

Define the map $T:\R^2 \to \R^3$ by $T \left ( \begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}\right )=\begin{bmatrix}
x_1-x_2 \\
x_1+x_2 \\
x_2
\end{bmatrix}$.

(a) Show that $T$ is a linear transformation.

(b) Find a matrix $A$ such that $T(\mathbf{x})=A\mathbf{x}$ for each $\mathbf{x} \in \R^2$.

(c) Describe the null space (kernel) and the range of $T$ and give the rank and the nullity of $T$.

 
Read solution

LoadingAdd to solve later