# Tagged: real eigenvalue

## Problem 609

Let $A$ be a $2\times 2$ real symmetric matrix.
Prove that all the eigenvalues of $A$ are real numbers by considering the characteristic polynomial of $A$.

## Problem 407

Let $n$ be an odd integer and let $A$ be an $n\times n$ real matrix.
Prove that the matrix $A$ has at least one real eigenvalue.

## Problem 403

Let $A$ be an $n\times n$ matrix. Suppose that $A$ has real eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$ with corresponding eigenvectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$.
Furthermore, suppose that
$|\lambda_1| > |\lambda_2| \geq \cdots \geq |\lambda_n|.$ Let
$\mathbf{x}_0=c_1\mathbf{u}_1+c_2\mathbf{u}_2+\cdots+c_n\mathbf{u}_n$ for some real numbers $c_1, c_2, \dots, c_n$ and $c_1\neq 0$.

Define
$\mathbf{x}_{k+1}=A\mathbf{x}_k \text{ for } k=0, 1, 2,\dots$ and let
$\beta_k=\frac{\mathbf{x}_k\cdot \mathbf{x}_{k+1}}{\mathbf{x}_k \cdot \mathbf{x}_k}=\frac{\mathbf{x}_k^{\trans} \mathbf{x}_{k+1}}{\mathbf{x}_k^{\trans} \mathbf{x}_k}.$

Prove that
$\lim_{k\to \infty} \beta_k=\lambda_1.$

## Problem 396

A real symmetric $n \times n$ matrix $A$ is called positive definite if
$\mathbf{x}^{\trans}A\mathbf{x}>0$ for all nonzero vectors $\mathbf{x}$ in $\R^n$.

(a) Prove that the eigenvalues of a real symmetric positive-definite matrix $A$ are all positive.

(b) Prove that if eigenvalues of a real symmetric matrix $A$ are all positive, then $A$ is positive-definite.

## Problem 202

Show that eigenvalues of a Hermitian matrix $A$ are real numbers.

(The Ohio State University Linear Algebra Exam Problem)