Let $A$ be a $2\times 2$ real symmetric matrix.
Prove that all the eigenvalues of $A$ are real numbers by considering the characteristic polynomial of $A$.
Let $A$ be an $n\times n$ matrix. Suppose that $A$ has real eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$ with corresponding eigenvectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$.
Furthermore, suppose that
\[|\lambda_1| > |\lambda_2| \geq \cdots \geq |\lambda_n|.\]
Let
\[\mathbf{x}_0=c_1\mathbf{u}_1+c_2\mathbf{u}_2+\cdots+c_n\mathbf{u}_n\]
for some real numbers $c_1, c_2, \dots, c_n$ and $c_1\neq 0$.
Define
\[\mathbf{x}_{k+1}=A\mathbf{x}_k \text{ for } k=0, 1, 2,\dots\]
and let
\[\beta_k=\frac{\mathbf{x}_k\cdot \mathbf{x}_{k+1}}{\mathbf{x}_k \cdot \mathbf{x}_k}=\frac{\mathbf{x}_k^{\trans} \mathbf{x}_{k+1}}{\mathbf{x}_k^{\trans} \mathbf{x}_k}.\]
Prove that
\[\lim_{k\to \infty} \beta_k=\lambda_1.\]
A real symmetric $n \times n$ matrix $A$ is called positive definite if
\[\mathbf{x}^{\trans}A\mathbf{x}>0\]
for all nonzero vectors $\mathbf{x}$ in $\R^n$.
(a) Prove that the eigenvalues of a real symmetric positive-definite matrix $A$ are all positive.
(b) Prove that if eigenvalues of a real symmetric matrix $A$ are all positive, then $A$ is positive-definite.