Determine whether the following augmented matrices are in reduced row echelon form, and calculate the solution sets of their associated systems of linear equations.

For an $m\times n$ matrix $A$, we denote by $\mathrm{rref}(A)$ the matrix in reduced row echelon form that is row equivalent to $A$.
For example, consider the matrix $A=\begin{bmatrix}
1 & 1 & 1 \\
0 &2 &2
\end{bmatrix}$
Then we have
\[A=\begin{bmatrix}
1 & 1 & 1 \\
0 &2 &2
\end{bmatrix}
\xrightarrow{\frac{1}{2}R_2}
\begin{bmatrix}
1 & 1 & 1 \\
0 &1 & 1
\end{bmatrix}
\xrightarrow{R_1-R_2}
\begin{bmatrix}
1 & 0 & 0 \\
0 &1 &1
\end{bmatrix}\]
and the last matrix is in reduced row echelon form.
Hence $\mathrm{rref}(A)=\begin{bmatrix}
1 & 0 & 0 \\
0 &1 &1
\end{bmatrix}$.

Find an example of matrices $A$ and $B$ such that
\[\mathrm{rref}(AB)\neq \mathrm{rref}(A) \mathrm{rref}(B).\]

(a) Find a matrix $B$ in reduced row echelon form such that $B$ is row equivalent to the matrix $A$.

(b) Find a basis for the null space of $A$.

(c) Find a basis for the range of $A$ that consists of columns of $A$. For each columns, $A_j$ of $A$ that does not appear in the basis, express $A_j$ as a linear combination of the basis vectors.

Suppose that the following matrix $A$ is the augmented matrix for a system of linear equations.
\[A= \left[\begin{array}{rrr|r}
1 & 2 & 3 & 4 \\
2 &-1 & -2 & a^2 \\
-1 & -7 & -11 & a
\end{array} \right],\]
where $a$ is a real number. Determine all the values of $a$ so that the corresponding system is consistent.

Let $T: \R^2 \to \R^2$ be a linear transformation.
Let
\[
\mathbf{u}=\begin{bmatrix}
1 \\
2
\end{bmatrix}, \mathbf{v}=\begin{bmatrix}
3 \\
5
\end{bmatrix}\]
be 2-dimensional vectors.
Suppose that
\begin{align*}
T(\mathbf{u})&=T\left( \begin{bmatrix}
1 \\
2
\end{bmatrix} \right)=\begin{bmatrix}
-3 \\
5
\end{bmatrix},\\
T(\mathbf{v})&=T\left(\begin{bmatrix}
3 \\
5
\end{bmatrix}\right)=\begin{bmatrix}
7 \\
1
\end{bmatrix}.
\end{align*}
Let $\mathbf{w}=\begin{bmatrix}
x \\
y
\end{bmatrix}\in \R^2$.
Find the formula for $T(\mathbf{w})$ in terms of $x$ and $y$.

Let $P_2$ be the vector space of all polynomials of degree two or less.
Consider the subset in $P_2$
\[Q=\{ p_1(x), p_2(x), p_3(x), p_4(x)\},\]
where
\begin{align*}
&p_1(x)=x^2+2x+1, &p_2(x)=2x^2+3x+1, \\
&p_3(x)=2x^2, &p_4(x)=2x^2+x+1.
\end{align*}

(a) Use the basis $B=\{1, x, x^2\}$ of $P_2$, give the coordinate vectors of the vectors in $Q$.

(b) Find a basis of the span $\Span(Q)$ consisting of vectors in $Q$.

(c) For each vector in $Q$ which is not a basis vector you obtained in (b), express the vector as a linear combination of basis vectors.

Let $V$ be the vector space of all $2\times 2$ matrices, and let the subset $S$ of $V$ be defined by $S=\{A_1, A_2, A_3, A_4\}$, where
\begin{align*}
A_1=\begin{bmatrix}
1 & 2 \\
-1 & 3
\end{bmatrix}, \quad
A_2=\begin{bmatrix}
0 & -1 \\
1 & 4
\end{bmatrix}, \quad
A_3=\begin{bmatrix}
-1 & 0 \\
1 & -10
\end{bmatrix}, \quad
A_4=\begin{bmatrix}
3 & 7 \\
-2 & 6
\end{bmatrix}.
\end{align*}
Find a basis of the span $\Span(S)$ consisting of vectors in $S$ and find the dimension of $\Span(S)$.

Let $A$ be the following $3 \times 3$ matrix.
\[A=\begin{bmatrix}
1 & 1 & -1 \\
0 &1 &2 \\
1 & 1 & a
\end{bmatrix}.\]
Determine the values of $a$ so that the matrix $A$ is nonsingular.

Determine whether the following systems of equations (or matrix equations) described below has no solution, one unique solution or infinitely many solutions and justify your answer.

(a) \[\left\{
\begin{array}{c}
ax+by=c \\
dx+ey=f,
\end{array}
\right.
\]
where $a,b,c, d$ are scalars satisfying $a/d=b/e=c/f$.

(b) $A \mathbf{x}=\mathbf{0}$, where $A$ is a singular matrix.

(c) A homogeneous system of $3$ equations in $4$ unknowns.

(d) $A\mathbf{x}=\mathbf{b}$, where the row-reduced echelon form of the augmented matrix $[A|\mathbf{b}]$ looks as follows:
\[\begin{bmatrix}
1 & 0 & -1 & 0 \\
0 &1 & 2 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}.\]
(The Ohio State University, Linear Algebra Exam) Read solution

Let A be the matrix
\[\begin{bmatrix}
1 & -1 & 0 \\
0 &1 &-1 \\
0 & 0 & 1
\end{bmatrix}.\]
Is the matrix $A$ invertible? If not, then explain why it isn’t invertible. If so, then find the inverse.