Tagged: restriction of a linear transformation

Restriction of a Linear Transformation on the x-z Plane is a Linear Transformation

Problem 428

Let $T:\R^3 \to \R^3$ be a linear transformation and suppose that its matrix representation with respect to the standard basis is given by the matrix
1 & 0 & 2 \\
0 &3 &0 \\
4 & 0 & 5

(a) Prove that the linear transformation $T$ sends points on the $x$-$z$ plane to points on the $x$-$z$ plane.

(b) Prove that the restriction of $T$ on the $x$-$z$ plane is a linear transformation.

(c) Find the matrix representation of the linear transformation obtained in part (b) with respect to the standard basis
\[\left\{\, \begin{bmatrix}
1 \\
0 \\
\end{bmatrix}, \begin{bmatrix}
0 \\
0 \\
\end{bmatrix} \,\right\}\] of the $x$-$z$ plane.

Read solution

LoadingAdd to solve later