Tagged: ring homomorphism

Ring Homomorphisms and Radical Ideals

Problem 624

Let $R$ and $R’$ be commutative rings and let $f:R\to R’$ be a ring homomorphism.
Let $I$ and $I’$ be ideals of $R$ and $R’$, respectively.

(a) Prove that $f(\sqrt{I}\,) \subset \sqrt{f(I)}$.

(b) Prove that $\sqrt{f^{-1}(I’)}=f^{-1}(\sqrt{I’})$

(c) Suppose that $f$ is surjective and $\ker(f)\subset I$. Then prove that $f(\sqrt{I}\,) =\sqrt{f(I)}$

 
Read solution

LoadingAdd to solve later

The Quotient Ring by an Ideal of a Ring of Some Matrices is Isomorphic to $\Q$.

Problem 525

Let
\[R=\left\{\, \begin{bmatrix}
a & b\\
0& a
\end{bmatrix} \quad \middle | \quad a, b\in \Q \,\right\}.\] Then the usual matrix addition and multiplication make $R$ an ring.

Let
\[J=\left\{\, \begin{bmatrix}
0 & b\\
0& 0
\end{bmatrix} \quad \middle | \quad b \in \Q \,\right\}\] be a subset of the ring $R$.

(a) Prove that the subset $J$ is an ideal of the ring $R$.

(b) Prove that the quotient ring $R/J$ is isomorphic to $\Q$.

 
Read solution

LoadingAdd to solve later

Generators of the Augmentation Ideal in a Group Ring

Problem 302

Let $R$ be a commutative ring with $1$ and let $G$ be a finite group with identity element $e$. Let $RG$ be the group ring. Then the map $\epsilon: RG \to R$ defined by
\[\epsilon(\sum_{i=1}^na_i g_i)=\sum_{i=1}^na_i,\] where $a_i\in R$ and $G=\{g_i\}_{i=1}^n$, is a ring homomorphism, called the augmentation map and the kernel of $\epsilon$ is called the augmentation ideal.

(a) Prove that the augmentation ideal in the group ring $RG$ is generated by $\{g-e \mid g\in G\}$.

(b) Prove that if $G=\langle g\rangle$ is a finite cyclic group generated by $g$, then the augmentation ideal is generated by $g-e$.
 
Read solution

LoadingAdd to solve later

Explicit Field Isomorphism of Finite Fields

Problem 233

(a) Let $f_1(x)$ and $f_2(x)$ be irreducible polynomials over a finite field $\F_p$, where $p$ is a prime number. Suppose that $f_1(x)$ and $f_2(x)$ have the same degrees. Then show that fields $\F_p[x]/(f_1(x))$ and $\F_p[x]/(f_2(x))$ are isomorphic.

(b) Show that the polynomials $x^3-x+1$ and $x^3-x-1$ are both irreducible polynomials over the finite field $\F_3$.

(c) Exhibit an explicit isomorphism between the splitting fields of $x^3-x+1$ and $x^3-x-1$ over $\F_3$.

 
Read solution

LoadingAdd to solve later