Solve a Linear Recurrence Relation Using Vector Space Technique
Problem 321
Let $V$ be a real vector space of all real sequences
\[(a_i)_{i=1}^{\infty}=(a_1, a_2, \dots).\]
Let $U$ be a subspace of $V$ defined by
\[U=\{(a_i)_{i=1}^{\infty}\in V \mid a_{n+2}=2a_{n+1}+3a_{n} \text{ for } n=1, 2,\dots \}.\]
Let $T$ be the linear transformation from $U$ to $U$ defined by
\[T\big((a_1, a_2, \dots)\big)=(a_2, a_3, \dots). \]
(a) Find the eigenvalues and eigenvectors of the linear transformation $T$.
(b) Use the result of (a), find a sequence $(a_i)_{i=1}^{\infty}$ satisfying $a_1=2, a_2=7$.
Add to solve later