Let $R$ be a commutative ring with $1$ and let $M$ be an $R$-module.
Prove that the $R$-module $M$ is irreducible if and only if $M$ is isomorphic to $R/I$, where $I$ is a maximal ideal of $R$, as an $R$-module.
Let $R$ be a ring with $1$.
A nonzero $R$-module $M$ is called irreducible if $0$ and $M$ are the only submodules of $M$.
(It is also called a simple module.)
(a) Prove that a nonzero $R$-module $M$ is irreducible if and only if $M$ is a cyclic module with any nonzero element as its generator.
Let $R$ be a ring with $1$ and let $M$ be an $R$-module. Let $I$ be an ideal of $R$.
Let $M’$ be the subset of elements $a$ of $M$ that are annihilated by some power $I^k$ of the ideal $I$, where the power $k$ may depend on $a$.
Prove that $M’$ is a submodule of $M$.
Let $R$ be a ring with $1$. Let $M$ be an $R$-module. Consider an ascending chain
\[N_1 \subset N_2 \subset \cdots\]
of submodules of $M$.
Prove that the union
\[\cup_{i=1}^{\infty} N_i\]
is a submodule of $M$.
Let $R$ be a ring with $1$ and let $M$ be a left $R$-module.
Let $S$ be a subset of $M$. The annihilator of $S$ in $R$ is the subset of the ring $R$ defined to be
\[\Ann_R(S)=\{ r\in R\mid rx=0 \text{ for all } x\in S\}.\]
(If $rx=0, r\in R, x\in S$, then we say $r$ annihilates $x$.)
Suppose that $N$ is a submodule of $M$. Then prove that the annihilator
\[\Ann_R(N)=\{ r\in R\mid rn=0 \text{ for all } n\in N\}\]
of $M$ in $R$ is a $2$-sided ideal of $R$.
Let $R$ be a ring with $1$. An element of the $R$-module $M$ is called a torsion element if $rm=0$ for some nonzero element $r\in R$.
The set of torsion elements is denoted
\[\Tor(M)=\{m \in M \mid rm=0 \text{ for some nonzero} r\in R\}.\]
(a) Prove that if $R$ is an integral domain, then $\Tor(M)$ is a submodule of $M$.
(Remark: an integral domain is a commutative ring by definition.) In this case the submodule $\Tor(M)$ is called torsion submodule of $M$.
(b) Find an example of a ring $R$ and an $R$-module $M$ such that $\Tor(M)$ is not a submodule.
(c) If $R$ has nonzero zero divisors, then show that every nonzero $R$-module has nonzero torsion element.