Is the Given Subset of The Ring of Integer Matrices an Ideal?
Problem 524
Let $R$ be the ring of all $2\times 2$ matrices with integer coefficients:
\[R=\left\{\, \begin{bmatrix}
a & b\\
c& d
\end{bmatrix} \quad \middle| \quad a, b, c, d\in \Z \,\right\}.\]
Let $S$ be the subset of $R$ given by
\[S=\left\{\, \begin{bmatrix}
s & 0\\
0& s
\end{bmatrix} \quad \middle | \quad s\in \Z \,\right\}.\]
(a) True or False: $S$ is a subring of $R$.
(b) True or False: $S$ is an ideal of $R$.
Add to solve later