Tagged: subspace

Prove a Given Subset is a Subspace and Find a Basis and Dimension

Problem 270

Let
\[A=\begin{bmatrix}
4 & 1\\
3& 2
\end{bmatrix}\] and consider the following subset $V$ of the 2-dimensional vector space $\R^2$.
\[V=\{\mathbf{x}\in \R^2 \mid A\mathbf{x}=5\mathbf{x}\}.\]

(a) Prove that the subset $V$ is a subspace of $\R^2$.

(b) Find a basis for $V$ and determine the dimension of $V$.

 
Read solution

LoadingAdd to solve later

Row Equivalent Matrix, Bases for the Null Space, Range, and Row Space of a Matrix

Problem 260

Let \[A=\begin{bmatrix}
1 & 1 & 2 \\
2 &2 &4 \\
2 & 3 & 5
\end{bmatrix}.\]

(a) Find a matrix $B$ in reduced row echelon form such that $B$ is row equivalent to the matrix $A$.

(b) Find a basis for the null space of $A$.

(c) Find a basis for the range of $A$ that consists of columns of $A$. For each columns, $A_j$ of $A$ that does not appear in the basis, express $A_j$ as a linear combination of the basis vectors.

(d) Exhibit a basis for the row space of $A$.

 
Read solution

LoadingAdd to solve later

Basis and Dimension of the Subspace of All Polynomials of Degree 4 or Less Satisfying Some Conditions.

Problem 256

Let $P_4$ be the vector space consisting of all polynomials of degree $4$ or less with real number coefficients.
Let $W$ be the subspace of $P_2$ by
\[W=\{ p(x)\in P_4 \mid p(1)+p(-1)=0 \text{ and } p(2)+p(-2)=0 \}.\] Find a basis of the subspace $W$ and determine the dimension of $W$.

 
Read solution

LoadingAdd to solve later

True or False. The Intersection of Bases is a Basis of the Intersection of Subspaces

Problem 253

Determine whether the following is true or false. If it is true, then give a proof. If it is false, then give a counterexample.

Let $W_1$ and $W_2$ be subspaces of the vector space $\R^n$.
If $B_1$ and $B_2$ are bases for $W_1$ and $W_2$, respectively, then $B_1\cap B_2$ is a basis of the subspace $W_1\cap W_2$.

 
Read solution

LoadingAdd to solve later

Find a Matrix so that a Given Subset is the Null Space of the Matrix, hence it’s a Subspace

Problem 252

Let $W$ be the subset of $\R^3$ defined by
\[W=\left \{ \mathbf{x}=\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}\in \R^3 \quad \middle| \quad 5x_1-2x_2+x_3=0 \right \}.\] Exhibit a $1\times 3$ matrix $A$ such that $W=\calN(A)$, the null space of $A$.
Conclude that the subset $W$ is a subspace of $\R^3$.

 
Read solution

LoadingAdd to solve later

Maximize the Dimension of the Null Space of $A-aI$

Problem 200

Let
\[ A=\begin{bmatrix}
5 & 2 & -1 \\
2 &2 &2 \\
-1 & 2 & 5
\end{bmatrix}.\]

Pick your favorite number $a$. Find the dimension of the null space of the matrix $A-aI$, where $I$ is the $3\times 3$ identity matrix.

Your score of this problem is equal to that dimension times five.

(The Ohio State University Linear Algebra Practice Problem)
 
Read solution

LoadingAdd to solve later

Given All Eigenvalues and Eigenspaces, Compute a Matrix Product

Problem 189

Let $C$ be a $4 \times 4$ matrix with all eigenvalues $\lambda=2, -1$ and eigensapces
\[E_2=\Span\left \{\quad \begin{bmatrix}
1 \\
1 \\
1 \\
1
\end{bmatrix} \quad\right \} \text{ and } E_{-1}=\Span\left \{ \quad\begin{bmatrix}
1 \\
2 \\
1 \\
1
\end{bmatrix},\quad \begin{bmatrix}
1 \\
1 \\
1 \\
2
\end{bmatrix} \quad\right\}.\]

Calculate $C^4 \mathbf{u}$ for $\mathbf{u}=\begin{bmatrix}
6 \\
8 \\
6 \\
9
\end{bmatrix}$ if possible. Explain why if it is not possible!

(The Ohio State University Linear Algebra Exam Problem)
 
Read solution

LoadingAdd to solve later

Subspace of Skew-Symmetric Matrices and Its Dimension

Problem 166

Let $V$ be the vector space of all $2\times 2$ matrices. Let $W$ be a subset of $V$ consisting of all $2\times 2$ skew-symmetric matrices. (Recall that a matrix $A$ is skew-symmetric if $A^{\trans}=-A$.)

(a) Prove that the subset $W$ is a subspace of $V$.

(b) Find the dimension of $W$.

(The Ohio State University Linear Algebra Exam Problem)
 
Read solution

LoadingAdd to solve later

Vector Space of Polynomials and a Basis of Its Subspace

Problem 165

Let $P_2$ be the vector space of all polynomials of degree two or less.
Consider the subset in $P_2$
\[Q=\{ p_1(x), p_2(x), p_3(x), p_4(x)\},\] where
\begin{align*}
&p_1(x)=1, &p_2(x)=x^2+x+1, \\
&p_3(x)=2x^2, &p_4(x)=x^2-x+1.
\end{align*}

(a) Use the basis $B=\{1, x, x^2\}$ of $P_2$, give the coordinate vectors of the vectors in $Q$.

(b) Find a basis of the span $\Span(Q)$ consisting of vectors in $Q$.

(c) For each vector in $Q$ which is not a basis vector you obtained in (b), express the vector as a linear combination of basis vectors.

(The Ohio State University Linear Algebra Exam Problem)
 
Read solution

LoadingAdd to solve later

Vector Space of Polynomials and Coordinate Vectors

Problem 157

Let $P_2$ be the vector space of all polynomials of degree two or less.
Consider the subset in $P_2$
\[Q=\{ p_1(x), p_2(x), p_3(x), p_4(x)\},\] where
\begin{align*}
&p_1(x)=x^2+2x+1, &p_2(x)=2x^2+3x+1, \\
&p_3(x)=2x^2, &p_4(x)=2x^2+x+1.
\end{align*}

(a) Use the basis $B=\{1, x, x^2\}$ of $P_2$, give the coordinate vectors of the vectors in $Q$.

(b) Find a basis of the span $\Span(Q)$ consisting of vectors in $Q$.

(c) For each vector in $Q$ which is not a basis vector you obtained in (b), express the vector as a linear combination of basis vectors.

 
Read solution

LoadingAdd to solve later

Show the Subset of the Vector Space of Polynomials is a Subspace and Find its Basis

Problem 153

Let $P_3$ be the vector space over $\R$ of all degree three or less polynomial with real number coefficient.
Let $W$ be the following subset of $P_3$.
\[W=\{p(x) \in P_3 \mid p'(-1)=0 \text{ and } p^{\prime\prime}(1)=0\}.\] Here $p'(x)$ is the first derivative of $p(x)$ and $p^{\prime\prime}(x)$ is the second derivative of $p(x)$.

Show that $W$ is a subspace of $P_3$ and find a basis for $W$.

 
Read solution

LoadingAdd to solve later

Find a Basis for a Subspace of the Vector Space of $2\times 2$ Matrices

Problem 152

Let $V$ be the vector space of all $2\times 2$ matrices, and let the subset $S$ of $V$ be defined by $S=\{A_1, A_2, A_3, A_4\}$, where
\begin{align*}
A_1=\begin{bmatrix}
1 & 2 \\
-1 & 3
\end{bmatrix}, \quad
A_2=\begin{bmatrix}
0 & -1 \\
1 & 4
\end{bmatrix}, \quad
A_3=\begin{bmatrix}
-1 & 0 \\
1 & -10
\end{bmatrix}, \quad
A_4=\begin{bmatrix}
3 & 7 \\
-2 & 6
\end{bmatrix}.
\end{align*}
Find a basis of the span $\Span(S)$ consisting of vectors in $S$ and find the dimension of $\Span(S)$.

 
Read solution

LoadingAdd to solve later

Subspaces of Symmetric, Skew-Symmetric Matrices

Problem 143

Let $V$ be the vector space over $\R$ consisting of all $n\times n$ real matrices for some fixed integer $n$. Prove or disprove that the following subsets of $V$ are subspaces of $V$.

(a) The set $S$ consisting of all $n\times n$ symmetric matrices.

(b) The set $T$ consisting of all $n \times n$ skew-symmetric matrices.

(c) The set $U$ consisting of all $n\times n$ nonsingular matrices.

 
Read solution

LoadingAdd to solve later

Linear Independent Vectors and the Vector Space Spanned By Them

Problem 141

Let $V$ be a vector space over a field $K$. Let $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ be linearly independent vectors in $V$. Let $U$ be the subspace of $V$ spanned by these vectors, that is, $U=\Span \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$.
Let $\mathbf{u}_{n+1}\in V$. Show that $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n, \mathbf{u}_{n+1}$ are linearly independent if and only if $\mathbf{u}_{n+1} \not \in U$.

 
Read solution

LoadingAdd to solve later