## Dimension of the Sum of Two Subspaces

## Problem 440

Let $U$ and $V$ be finite dimensional subspaces in a vector space over a scalar field $K$.

Then prove that

\[\dim(U+V) \leq \dim(U)+\dim(V).\]

Let $U$ and $V$ be finite dimensional subspaces in a vector space over a scalar field $K$.

Then prove that

\[\dim(U+V) \leq \dim(U)+\dim(V).\]

Let $V$ be a vector space over a field $K$.

If $W_1$ and $W_2$ are subspaces of $V$, then prove that the subset

\[W_1+W_2:=\{\mathbf{x}+\mathbf{y} \mid \mathbf{x}\in W_1, \mathbf{y}\in W_2\}\]
is a subspace of the vector space $V$.