Dimension of the Sum of Two Subspaces
Problem 440
Let $U$ and $V$ be finite dimensional subspaces in a vector space over a scalar field $K$.
Then prove that
\[\dim(U+V) \leq \dim(U)+\dim(V).\]
Let $U$ and $V$ be finite dimensional subspaces in a vector space over a scalar field $K$.
Then prove that
\[\dim(U+V) \leq \dim(U)+\dim(V).\]
Let $V$ be a vector space over a field $K$.
If $W_1$ and $W_2$ are subspaces of $V$, then prove that the subset
\[W_1+W_2:=\{\mathbf{x}+\mathbf{y} \mid \mathbf{x}\in W_1, \mathbf{y}\in W_2\}\]
is a subspace of the vector space $V$.