The Existence of an Element in an Abelian Group of Order the Least Common Multiple of Two Elements
Problem 497
Let $G$ be an abelian group.
Let $a$ and $b$ be elements in $G$ of order $m$ and $n$, respectively.
Prove that there exists an element $c$ in $G$ such that the order of $c$ is the least common multiple of $m$ and $n$.
Also determine whether the statement is true if $G$ is a non-abelian group.
Add to solve later