A Relation between the Dot Product and the Trace
Problem 638
Let $\mathbf{v}$ and $\mathbf{w}$ be two $n \times 1$ column vectors.
Prove that $\tr ( \mathbf{v} \mathbf{w}^\trans ) = \mathbf{v}^\trans \mathbf{w}$.
Add to solve laterLet $\mathbf{v}$ and $\mathbf{w}$ be two $n \times 1$ column vectors.
Prove that $\tr ( \mathbf{v} \mathbf{w}^\trans ) = \mathbf{v}^\trans \mathbf{w}$.
Add to solve laterLet $A$ and $B$ be $n \times n$ matrices.
Is it always true that $\tr (A B) = \tr (A) \tr (B) $?
If it is true, prove it. If not, give a counterexample.
Add to solve laterLet $A$ be an $n \times n$ matrix.
Is it true that $\tr ( A^\trans ) = \tr(A)$? If it is true, prove it. If not, give a counterexample.
Add to solve laterLet $A=\begin{bmatrix}
a & b\\
c& d
\end{bmatrix}$ be an $2\times 2$ matrix.
Express the eigenvalues of $A$ in terms of the trace and the determinant of $A$.
Add to solve later Let $I$ be the $2\times 2$ identity matrix.
Then prove that $-I$ cannot be a commutator $[A, B]:=ABA^{-1}B^{-1}$ for any $2\times 2$ matrices $A$ and $B$ with determinant $1$.
Let $A$ and $B$ be $2\times 2$ matrices such that $(AB)^2=O$, where $O$ is the $2\times 2$ zero matrix.
Determine whether $(BA)^2$ must be $O$ as well. If so, prove it. If not, give a counter example.
Add to solve later Let $A$ be a singular $2\times 2$ matrix such that $\tr(A)\neq -1$ and let $I$ be the $2\times 2$ identity matrix.
Then prove that the inverse matrix of the matrix $I+A$ is given by the following formula:
\[(I+A)^{-1}=I-\frac{1}{1+\tr(A)}A.\]
Using the formula, calculate the inverse matrix of $\begin{bmatrix}
2 & 1\\
1& 2
\end{bmatrix}$.
(a) Is the matrix $A=\begin{bmatrix}
1 & 2\\
0& 3
\end{bmatrix}$ similar to the matrix $B=\begin{bmatrix}
3 & 0\\
1& 2
\end{bmatrix}$?
(b) Is the matrix $A=\begin{bmatrix}
0 & 1\\
5& 3
\end{bmatrix}$ similar to the matrix $B=\begin{bmatrix}
1 & 2\\
4& 3
\end{bmatrix}$?
(c) Is the matrix $A=\begin{bmatrix}
-1 & 6\\
-2& 6
\end{bmatrix}$ similar to the matrix $B=\begin{bmatrix}
3 & 0\\
0& 2
\end{bmatrix}$?
(d) Is the matrix $A=\begin{bmatrix}
-1 & 6\\
-2& 6
\end{bmatrix}$ similar to the matrix $B=\begin{bmatrix}
1 & 2\\
-1& 4
\end{bmatrix}$?
Prove that if $A$ and $B$ are similar matrices, then their determinants are the same.
Add to solve later(a) A $2 \times 2$ matrix $A$ satisfies $\tr(A^2)=5$ and $\tr(A)=3$.
Find $\det(A)$.
(b) A $2 \times 2$ matrix has two parallel columns and $\tr(A)=5$. Find $\tr(A^2)$.
(c) A $2\times 2$ matrix $A$ has $\det(A)=5$ and positive integer eigenvalues. What is the trace of $A$?
(Harvard University, Linear Algebra Exam Problem)
Add to solve later Let $A, B$ be complex $2\times 2$ matrices satisfying the relation
\[A=AB-BA.\]
Prove that $A^2=O$, where $O$ is the $2\times 2$ zero matrix.
Add to solve laterLet $I$ be the $n\times n$ identity matrix, where $n$ is a positive integer. Prove that there are no $n\times n$ matrices $X$ and $Y$ such that
\[XY-YX=I.\]
Read solution
Let $V$ be the set of all $n \times n$ diagonal matrices whose traces are zero.
That is,
\begin{equation*}
V:=\left\{ A=\begin{bmatrix}
a_{11} & 0 & \dots & 0 \\
0 &a_{22} & \dots & 0 \\
0 & 0 & \ddots & \vdots \\
0 & 0 & \dots & a_{nn}
\end{bmatrix} \quad \middle| \quad
\begin{array}{l}
a_{11}, \dots, a_{nn} \in \C,\\
\tr(A)=0 \\
\end{array}
\right\}
\end{equation*}
Let $E_{ij}$ denote the $n \times n$ matrix whose $(i,j)$-entry is $1$ and zero elsewhere.
(a) Show that $V$ is a subspace of the vector space $M_n$ over $\C$ of all $n\times n$ matrices. (You may assume without a proof that $M_n$ is a vector space.)
(b) Show that matrices
\[E_{11}-E_{22}, \, E_{22}-E_{33}, \, \dots,\, E_{n-1\, n-1}-E_{nn}\]
are a basis for the vector space $V$.
(c) Find the dimension of $V$.
Read solution
Let $F$ and $H$ be an $n\times n$ matrices satisfying the relation
\[HF-FH=-2F.\]
(a) Find the trace of the matrix $F$.
(b) Let $\lambda$ be an eigenvalue of $H$ and let $\mathbf{v}$ be an eigenvector corresponding to $\lambda$. Show that there exists an positive integer $N$ such that $F^N\mathbf{v}=\mathbf{0}$.
Add to solve laterLet $A$ be an $n\times n$ matrix such that $A^k=I_n$, where $k\in \N$ and $I_n$ is the $n \times n$ identity matrix.
Show that the trace of $(A^{-1})^{\trans}$ is the conjugate of the trace of $A$. That is, show that $\tr((A^{-1})^{\trans})=\overline{\tr(A)}$.
Add to solve later
(a) Let
\[A=\begin{bmatrix}
a_{11} & a_{12}\\
a_{21}& a_{22}
\end{bmatrix}\]
be a matrix such that $a_{11}+a_{12}=1$ and $a_{21}+a_{22}=1$. Namely, the sum of the entries in each row is $1$.
(Such a matrix is called (right) stochastic matrix (also termed probability matrix, transition matrix, substitution matrix, or Markov matrix).)
Then prove that the matrix $A$ has an eigenvalue $1$.
(b) Find all the eigenvalues of the matrix
\[B=\begin{bmatrix}
0.3 & 0.7\\
0.6& 0.4
\end{bmatrix}.\]
(c) For each eigenvalue of $B$, find the corresponding eigenvectors.
Add to solve laterLet $A$ be an $n\times n$ matrix and suppose that $A^r=I_n$ for some positive integer $r$. Then show that
(a) $|\tr(A)|\leq n$.
(b) If $|\tr(A)|=n$, then $A=\zeta I_n$ for an $r$-th root of unity $\zeta$.
(c) $\tr(A)=n$ if and only if $A=I_n$.
Add to solve laterLet $A$ be an $n \times n$ matrix such that $\tr(A^n)=0$ for all $n \in \N$.
Then prove that $A$ is a nilpotent matrix. Namely there exist a positive integer $m$ such that $A^m$ is the zero matrix.
Let $A=(a_{i j})$ and $B=(b_{i j})$ be $n\times n$ real matrices for some $n \in \N$. Then answer the following questions about the trace of a matrix.
(a) Express $\tr(AB^{\trans})$ in terms of the entries of the matrices $A$ and $B$. Here $B^{\trans}$ is the transpose matrix of $B$.
(b) Show that $\tr(AA^{\trans})$ is the sum of the square of the entries of $A$.
(c) Show that if $A$ is nonzero symmetric matrix, then $\tr(A^2)>0$.
Add to solve later