# Tagged: transpose

## Problem 713

Determine bases for $\calN(A)$ and $\calN(A^{T}A)$ when
$A= \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix} .$ Then, determine the ranks and nullities of the matrices $A$ and $A^{\trans}A$.

## Problem 640

Let $\mathbf{v}$ be an $n \times 1$ column vector.

Prove that $\mathbf{v} \mathbf{v}^\trans$ is a symmetric matrix.

## Problem 639

Let $\mathbf{v}$ be an $n \times 1$ column vector.

Prove that $\mathbf{v}^\trans \mathbf{v} = 0$ if and only if $\mathbf{v}$ is the zero vector $\mathbf{0}$.

## Problem 638

Let $\mathbf{v}$ and $\mathbf{w}$ be two $n \times 1$ column vectors.

Prove that $\tr ( \mathbf{v} \mathbf{w}^\trans ) = \mathbf{v}^\trans \mathbf{w}$.

## Problem 637

Let $\mathbf{v}$ and $\mathbf{w}$ be two $n \times 1$ column vectors.

(a) Prove that $\mathbf{v}^\trans \mathbf{w} = \mathbf{w}^\trans \mathbf{v}$.

(b) Provide an example to show that $\mathbf{v} \mathbf{w}^\trans$ is not always equal to $\mathbf{w} \mathbf{v}^\trans$.

## Problem 636

Calculate the following expressions, using the following matrices:
$A = \begin{bmatrix} 2 & 3 \\ -5 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix}, \qquad \mathbf{v} = \begin{bmatrix} 2 \\ -4 \end{bmatrix}$

(a) $A B^\trans + \mathbf{v} \mathbf{v}^\trans$.

(b) $A \mathbf{v} – 2 \mathbf{v}$.

(c) $\mathbf{v}^{\trans} B$.

(d) $\mathbf{v}^\trans \mathbf{v} + \mathbf{v}^\trans B A^\trans \mathbf{v}$.

## Problem 633

Let $A$ be an $n \times n$ matrix.

Is it true that $\tr ( A^\trans ) = \tr(A)$? If it is true, prove it. If not, give a counterexample.

## Problem 558

Let $A$ be an $n\times n$ nonsingular matrix.

Prove that the transpose matrix $A^{\trans}$ is also nonsingular.

## Problem 556

Let $\mathbf{v}$ be a nonzero vector in $\R^n$.
Then the dot product $\mathbf{v}\cdot \mathbf{v}=\mathbf{v}^{\trans}\mathbf{v}\neq 0$.
Set $a:=\frac{2}{\mathbf{v}^{\trans}\mathbf{v}}$ and define the $n\times n$ matrix $A$ by
$A=I-a\mathbf{v}\mathbf{v}^{\trans},$ where $I$ is the $n\times n$ identity matrix.

Prove that $A$ is a symmetric matrix and $AA=I$.
Conclude that the inverse matrix is $A^{-1}=A$.

## Problem 508

Let $A$ be a square matrix.
Prove that the eigenvalues of the transpose $A^{\trans}$ are the same as the eigenvalues of $A$.

## Problem 506

Let $A$ be an $n\times n$ invertible matrix. Then prove the transpose $A^{\trans}$ is also invertible and that the inverse matrix of the transpose $A^{\trans}$ is the transpose of the inverse matrix $A^{-1}$.
Namely, show that
$(A^{\trans})^{-1}=(A^{-1})^{\trans}.$

## Problem 447

Let $A$ be a square matrix such that
$A^{\trans}A=A,$ where $A^{\trans}$ is the transpose matrix of $A$.
Prove that $A$ is idempotent, that is, $A^2=A$. Also, prove that $A$ is a symmetric matrix.

## Problem 406

Let $A$ be an $n\times n$ matrix. Suppose that $\mathbf{y}$ is a nonzero row vector such that
$\mathbf{y}A=\mathbf{y}.$ (Here a row vector means a $1\times n$ matrix.)
Prove that there is a nonzero column vector $\mathbf{x}$ such that
$A\mathbf{x}=\mathbf{x}.$ (Here a column vector means an $n \times 1$ matrix.)

## Problem 397

Suppose $A$ is a positive definite symmetric $n\times n$ matrix.

(a) Prove that $A$ is invertible.

(b) Prove that $A^{-1}$ is symmetric.

(c) Prove that $A^{-1}$ is positive-definite.

(MIT, Linear Algebra Exam Problem)

Read solution

## Problem 317

Suppose that $A$ is a real $n\times n$ matrix.

(a) Is it true that $A$ must commute with its transpose?

(b) Suppose that the columns of $A$ (considered as vectors) form an orthonormal set.
Is it true that the rows of $A$ must also form an orthonormal set?

(University of California, Berkeley, Linear Algebra Qualifying Exam)

## Problem 297

Let $A, B, C$ be the following $3\times 3$ matrices.
$A=\begin{bmatrix} 1 & 2 & 3 \\ 4 &5 &6 \\ 7 & 8 & 9 \end{bmatrix}, B=\begin{bmatrix} 1 & 0 & 1 \\ 0 &3 &0 \\ 1 & 0 & 5 \end{bmatrix}, C=\begin{bmatrix} -1 & 0\ & 1 \\ 0 &5 &6 \\ 3 & 0 & 1 \end{bmatrix}.$ Then compute and simplify the following expression.
$(A^{\trans}-B)^{\trans}+C(B^{-1}C)^{-1}.$

(The Ohio State University, Linear Algebra Midterm Exam Problem)

Read solution

## Problem 273

(a) The given matrix is the augmented matrix for a system of linear equations.
Give the vector form for the general solution.
$\left[\begin{array}{rrrrr|r} 1 & 0 & -1 & 0 &-2 & 0 \\ 0 & 1 & 2 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ \end{array} \right].$

(b) Let
$A=\begin{bmatrix} 1 & 2 & 3 \\ 4 &5 &6 \end{bmatrix}, B=\begin{bmatrix} 1 & 0 & 1 \\ 0 &1 &0 \end{bmatrix}, C=\begin{bmatrix} 1 & 2\\ 0& 6 \end{bmatrix}, \mathbf{v}=\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.$ Then compute and simplify the following expression.
$\mathbf{v}^{\trans}\left( A^{\trans}-(A-B)^{\trans}\right)C.$

## Problem 254

Let $\mathbf{a}$ and $\mathbf{b}$ be vectors in $\R^n$ such that their length are
$\|\mathbf{a}\|=\|\mathbf{b}\|=1$ and the inner product
$\mathbf{a}\cdot \mathbf{b}=\mathbf{a}^{\trans}\mathbf{b}=-\frac{1}{2}.$

Then determine the length $\|\mathbf{a}-\mathbf{b}\|$.
(Note that this length is the distance between $\mathbf{a}$ and $\mathbf{b}$.)

## Problem 218

For a real number $0\leq \theta \leq \pi$, we define the real $3\times 3$ matrix $A$ by
$A=\begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta &\cos\theta &0 \\ 0 & 0 & 1 \end{bmatrix}.$

(a) Find the determinant of the matrix $A$.

(b) Show that $A$ is an orthogonal matrix.

(c) Find the eigenvalues of $A$.

## Problem 214

Find the inverse matrix of the matrix
$A=\begin{bmatrix} \frac{2}{7} & \frac{3}{7} & \frac{6}{7} \\[6 pt] \frac{6}{7} &\frac{2}{7} &-\frac{3}{7} \\[6pt] -\frac{3}{7} & \frac{6}{7} & -\frac{2}{7} \end{bmatrix}.$