Nilpotent Matrix and Eigenvalues of the Matrix
Problem 11
An $n\times n$ matrix $A$ is called nilpotent if $A^k=O$, where $O$ is the $n\times n$ zero matrix.
Prove the followings.
(a) The matrix $A$ is nilpotent if and only if all the eigenvalues of $A$ is zero.
(b) The matrix $A$ is nilpotent if and only if $A^n=O$.
Read solution