Linear Algebra Midterm 1 at the Ohio State University (3/3)
Problem 572
The following problems are Midterm 1 problems of Linear Algebra (Math 2568) at the Ohio State University in Autumn 2017.
There were 9 problems that covered Chapter 1 of our textbook (Johnson, Riess, Arnold).
The time limit was 55 minutes.
This post is Part 3 and contains Problem 7, 8, and 9.
Check out Part 1 and Part 2 for the rest of the exam problems.
Problem 7. Let $A=\begin{bmatrix}
-3 & -4\\
8& 9
\end{bmatrix}$ and $\mathbf{v}=\begin{bmatrix}
-1 \\
2
\end{bmatrix}$.
(a) Calculate $A\mathbf{v}$ and find the number $\lambda$ such that $A\mathbf{v}=\lambda \mathbf{v}$.
(b) Without forming $A^3$, calculate the vector $A^3\mathbf{v}$.
Problem 8. Prove that if $A$ and $B$ are $n\times n$ nonsingular matrices, then the product $AB$ is also nonsingular.
Problem 9.
Determine whether each of the following sentences is true or false.
(a) There is a $3\times 3$ homogeneous system that has exactly three solutions.
(b) If $A$ and $B$ are $n\times n$ symmetric matrices, then the sum $A+B$ is also symmetric.
(c) If $n$-dimensional vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly dependent, then the vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ is also linearly dependent for any $n$-dimensional vector $\mathbf{v}_4$.
(d) If the coefficient matrix of a system of linear equations is singular, then the system is inconsistent.
(e) The vectors
\[\mathbf{v}_1=\begin{bmatrix}
1 \\
0 \\
1
\end{bmatrix}, \mathbf{v}_2=\begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix}, \mathbf{v}_3=\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}\]
are linearly independent.