Tagged: unit

A ring is Local if and only if the set of Non-Units is an Ideal

Problem 526

A ring is called local if it has a unique maximal ideal.

(a) Prove that a ring $R$ with $1$ is local if and only if the set of non-unit elements of $R$ is an ideal of $R$.

(b) Let $R$ be a ring with $1$ and suppose that $M$ is a maximal ideal of $R$.
Prove that if every element of $1+M$ is a unit, then $R$ is a local ring.

 
Read solution

LoadingAdd to solve later

Ring of Gaussian Integers and Determine its Unit Elements

Problem 188

Denote by $i$ the square root of $-1$.
Let
\[R=\Z[i]=\{a+ib \mid a, b \in \Z \}\] be the ring of Gaussian integers.
We define the norm $N:\Z[i] \to \Z$ by sending $\alpha=a+ib$ to
\[N(\alpha)=\alpha \bar{\alpha}=a^2+b^2.\]

Here $\bar{\alpha}$ is the complex conjugate of $\alpha$.
Then show that an element $\alpha \in R$ is a unit if and only if the norm $N(\alpha)=\pm 1$.
Also, determine all the units of the ring $R=\Z[i]$ of Gaussian integers.

 
Read solution

LoadingAdd to solve later