# Tagged: upper triangular matrix

## Problem 583

Consider the $2\times 2$ complex matrix
$A=\begin{bmatrix} a & b-a\\ 0& b \end{bmatrix}.$

(a) Find the eigenvalues of $A$.

(b) For each eigenvalue of $A$, determine the eigenvectors.

(c) Diagonalize the matrix $A$.

(d) Using the result of the diagonalization, compute and simplify $A^k$ for each positive integer $k$.

## Problem 482

For which values of constants $a, b$ and $c$ is the matrix
$A=\begin{bmatrix} 7 & a & b \\ 0 &2 &c \\ 0 & 0 & 3 \end{bmatrix}$ diagonalizable?

(The Ohio State University, Linear Algebra Final Exam Problem)

## Problem 388

Let $A$ be $n\times n$ matrix and let $\lambda_1, \lambda_2, \dots, \lambda_n$ be all the eigenvalues of $A$. (Some of them may be the same.)

For each positive integer $k$, prove that $\lambda_1^k, \lambda_2^k, \dots, \lambda_n^k$ are all the eigenvalues of $A^k$.

## Problem 283

Let $F$ be a field and let
$H(F)=\left\{\, \begin{bmatrix} 1 & a & b \\ 0 &1 &c \\ 0 & 0 & 1 \end{bmatrix} \quad \middle| \quad \text{ for any} a,b,c\in F\, \right\}$ be the Heisenberg group over $F$.
(The group operation of the Heisenberg group is matrix multiplication.)

Determine which matrices lie in the center of $H(F)$ and prove that the center $Z\big(H(F)\big)$ is isomorphic to the additive group $F$.

## Problem 275

Let $A$ be the following $3\times 3$ upper triangular matrix.
$A=\begin{bmatrix} 1 & x & y \\ 0 &1 &z \\ 0 & 0 & 1 \end{bmatrix},$ where $x, y, z$ are some real numbers.

Determine whether the matrix $A$ is invertible or not. If it is invertible, then find the inverse matrix $A^{-1}$.

## Problem 237

Let $A$ be an $n \times n$ matrix. Suppose that all the eigenvalues $\lambda$ of $A$ are real and satisfy $\lambda <1$.

Then show that the determinant $\det(I-A) >0,$ where $I$ is the $n \times n$ identity matrix.

## Problem 184

Suppose that $A$ and $P$ are $3 \times 3$ matrices and $P$ is invertible matrix.
If
$P^{-1}AP=\begin{bmatrix} 1 & 2 & 3 \\ 0 &4 &5 \\ 0 & 0 & 6 \end{bmatrix},$ then find all the eigenvalues of the matrix $A^2$.

## Problem 133

Find a square root of the matrix
$A=\begin{bmatrix} 1 & 3 & -3 \\ 0 &4 &5 \\ 0 & 0 & 9 \end{bmatrix}.$

How many square roots does this matrix have?

(University of California, Berkeley Qualifying Exam)

## Problem 77

A square matrix $A$ is called nilpotent if there exists a positive integer $k$ such that $A^k=O$, where $O$ is the zero matrix.

(a) If $A$ is a nilpotent $n \times n$ matrix and $B$ is an $n\times n$ matrix such that $AB=BA$. Show that the product $AB$ is nilpotent.

(b) Let $P$ be an invertible $n \times n$ matrix and let $N$ be a nilpotent $n\times n$ matrix. Is the product $PN$ nilpotent? If so, prove it. If not, give a counterexample.

## Problem 47

Let $T=\begin{bmatrix} 1 & 0 & 2 \\ 0 &1 &1 \\ 0 & 0 & 2 \end{bmatrix}$.
Calculate and simplify the expression
$-T^3+4T^2+5T-2I,$ where $I$ is the $3\times 3$ identity matrix.

(The Ohio State University Linear Algebra Exam)

## Problem 21

Let $A$ be an $n \times n$ matrix such that $\tr(A^n)=0$ for all $n \in \N$.
Then prove that $A$ is a nilpotent matrix. Namely there exist a positive integer $m$ such that $A^m$ is the zero matrix.

## Problem 11

An $n\times n$ matrix $A$ is called nilpotent if $A^k=O$, where $O$ is the $n\times n$ zero matrix.
Prove the followings.

(a) The matrix $A$ is nilpotent if and only if all the eigenvalues of $A$ is zero.

(b) The matrix $A$ is nilpotent if and only if $A^n=O$.

## Problem 9

Let $A$ be an $n\times n$ matrix and let $\lambda_1, \dots, \lambda_n$ be its eigenvalues.
Show that

(1) $$\det(A)=\prod_{i=1}^n \lambda_i$$

(2) $$\tr(A)=\sum_{i=1}^n \lambda_i$$

Here $\det(A)$ is the determinant of the matrix $A$ and $\tr(A)$ is the trace of the matrix $A$.

Namely, prove that (1) the determinant of $A$ is the product of its eigenvalues, and (2) the trace of $A$ is the sum of the eigenvalues.