# Tagged: vector form for the general solution

## Problem 701

Find the vector form solution $\mathbf{x}$ of the equation $A\mathbf{x}=\mathbf{0}$, where $A=\begin{bmatrix} 1 & 1 & 1 & 1 &2 \\ 1 & 2 & 4 & 0 & 5 \\ 3 & 2 & 0 & 5 & 2 \\ \end{bmatrix}$. Also, find two linearly independent vectors $\mathbf{x}$ satisfying $A\mathbf{x}=\mathbf{0}$.

## Problem 296

Solve the following system of linear equations and give the vector form for the general solution.
\begin{align*}
x_1 -x_3 -2x_5&=1 \\
x_2+3x_3-x_5 &=2 \\
2x_1 -2x_3 +x_4 -3x_5 &= 0
\end{align*}

(The Ohio State University, linear algebra midterm exam problem)

## Problem 273

(a) The given matrix is the augmented matrix for a system of linear equations.
Give the vector form for the general solution.
$\left[\begin{array}{rrrrr|r} 1 & 0 & -1 & 0 &-2 & 0 \\ 0 & 1 & 2 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ \end{array} \right].$

(b) Let
$A=\begin{bmatrix} 1 & 2 & 3 \\ 4 &5 &6 \end{bmatrix}, B=\begin{bmatrix} 1 & 0 & 1 \\ 0 &1 &0 \end{bmatrix}, C=\begin{bmatrix} 1 & 2\\ 0& 6 \end{bmatrix}, \mathbf{v}=\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.$ Then compute and simplify the following expression.
$\mathbf{v}^{\trans}\left( A^{\trans}-(A-B)^{\trans}\right)C.$

## Problem 267

Solve the following system of linear equations by transforming its augmented matrix to reduced echelon form (Gauss-Jordan elimination).

Find the vector form for the general solution.
\begin{align*}
x_1-x_3-3x_5&=1\\
3x_1+x_2-x_3+x_4-9x_5&=3\\
x_1-x_3+x_4-2x_5&=1.
\end{align*}