# Group-Theory2

by Yu · Published · Updated

Add to solve later

Add to solve later

Add to solve later

### More from my site

- Linear Independent Continuous Functions Let $C[3, 10]$ be the vector space consisting of all continuous functions defined on the interval $[3, 10]$. Consider the set \[S=\{ \sqrt{x}, x^2 \}\] in $C[3,10]$. Show that the set $S$ is linearly independent in $C[3,10]$. Proof. Note that the zero vector […]
- Condition that a Matrix is Similar to the Companion Matrix of its Characteristic Polynomial Let $A$ be an $n\times n$ complex matrix. Let $p(x)=\det(xI-A)$ be the characteristic polynomial of $A$ and write it as \[p(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0,\] where $a_i$ are real numbers. Let $C$ be the companion matrix of the polynomial $p(x)$ given […]
- The Coordinate Vector for a Polynomial with respect to the Given Basis Let $\mathrm{P}_3$ denote the set of polynomials of degree $3$ or less with real coefficients. Consider the ordered basis \[B = \left\{ 1+x , 1+x^2 , x - x^2 + 2x^3 , 1 - x - x^2 \right\}.\] Write the coordinate vector for the polynomial $f(x) = -3 + 2x^3$ in terms of the basis […]
- Quiz: Linear Equations and Matrix Entreis Do the following quiz about Linear Equations Matrix entries. There are two questions. After completing the quiz, click View questions to see the solutions.
- Three Linearly Independent Vectors in $\R^3$ Form a Basis. Three Vectors Spanning $\R^3$ Form a Basis. Let $B=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ be a set of three-dimensional vectors in $\R^3$. (a) Prove that if the set $B$ is linearly independent, then $B$ is a basis of the vector space $\R^3$. (b) Prove that if the set $B$ spans $\R^3$, then $B$ is a basis of […]
- Compute the Determinant of a Magic Square Let \[ A= \begin{bmatrix} 8 & 1 & 6 \\ 3 & 5 & 7 \\ 4 & 9 & 2 \end{bmatrix} . \] Notice that $A$ contains every integer from $1$ to $9$ and that the sums of each row, column, and diagonal of $A$ are equal. Such a grid is sometimes called a magic […]
- The Set of Square Elements in the Multiplicative Group $(\Zmod{p})^*$ Suppose that $p$ is a prime number greater than $3$. Consider the multiplicative group $G=(\Zmod{p})^*$ of order $p-1$. (a) Prove that the set of squares $S=\{x^2\mid x\in G\}$ is a subgroup of the multiplicative group $G$. (b) Determine the index $[G : S]$. (c) Assume […]
- Isomorphism of the Endomorphism and the Tensor Product of a Vector Space Let $V$ be a finite dimensional vector space over a field $K$ and let $\End (V)$ be the vector space of linear transformations from $V$ to $V$. Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be a basis for $V$. Show that the map $\phi:\End (V) \to V^{\oplus n}$ defined by […]