The Centralizer of a Matrix is a Subspace

Vector Space Problems and Solutions

Problem 660

Let $V$ be the vector space of $n \times n$ matrices, and $M \in V$ a fixed matrix. Define
\[W = \{ A \in V \mid AM = MA \}.\] The set $W$ here is called the centralizer of $M$ in $V$.

Prove that $W$ is a subspace of $V$.

 
LoadingAdd to solve later

Sponsored Links

Proof.

First we check that the zero element of $V$ lies in $W$. The zero element of $V$ is the $n \times n$ zero matrix $\mathbf{0}$.

It is clear that $M \mathbf{0} = \mathbf{0} = \mathbf{0} M$, and so $\mathbf{0} \in W$.


Next suppose $A, B \in W$ and $c \in \mathbb{R}$. Then $AM = MA$ and $BM = MB$, and so
\[( A + B ) M = A M + B M = M A + M B = M ( A + B ).\] Thus, $A + B \in W$.


We also have
\[( c A ) M = c ( A M ) = c ( M A ) = M ( c A ),\] and so $c A \in W$.

These three criteria show that $W$ is a subspace of $V$.


LoadingAdd to solve later

Sponsored Links

More from my site

  • The Intersection of Two Subspaces is also a SubspaceThe Intersection of Two Subspaces is also a Subspace Let $U$ and $V$ be subspaces of the $n$-dimensional vector space $\R^n$. Prove that the intersection $U\cap V$ is also a subspace of $\R^n$.   Definition (Intersection). Recall that the intersection $U\cap V$ is the set of elements that are both elements of $U$ […]
  • Prove that the Center of Matrices is a SubspaceProve that the Center of Matrices is a Subspace Let $V$ be the vector space of $n \times n$ matrices with real coefficients, and define \[ W = \{ \mathbf{v} \in V \mid \mathbf{v} \mathbf{w} = \mathbf{w} \mathbf{v} \mbox{ for all } \mathbf{w} \in V \}.\] The set $W$ is called the center of $V$. Prove that $W$ is a subspace […]
  • Determine the Values of $a$ so that $W_a$ is a SubspaceDetermine the Values of $a$ so that $W_a$ is a Subspace For what real values of $a$ is the set \[W_a = \{ f \in C(\mathbb{R}) \mid f(0) = a \}\] a subspace of the vector space $C(\mathbb{R})$ of all real-valued functions?   Solution. The zero element of $C(\mathbb{R})$ is the function $\mathbf{0}$ defined by […]
  • For Fixed Matrices $R, S$, the Matrices $RAS$ form a SubspaceFor Fixed Matrices $R, S$, the Matrices $RAS$ form a Subspace Let $V$ be the vector space of $k \times k$ matrices. Then for fixed matrices $R, S \in V$, define the subset $W = \{ R A S \mid A \in V \}$. Prove that $W$ is a vector subspace of $V$.   Proof. We verify the subspace criteria: the zero vector of $V$ is in $W$, and […]
  • Subspaces of Symmetric, Skew-Symmetric MatricesSubspaces of Symmetric, Skew-Symmetric Matrices Let $V$ be the vector space over $\R$ consisting of all $n\times n$ real matrices for some fixed integer $n$. Prove or disprove that the following subsets of $V$ are subspaces of $V$. (a) The set $S$ consisting of all $n\times n$ symmetric matrices. (b) The set $T$ consisting of […]
  • The Vector Space Consisting of All Traceless Diagonal MatricesThe Vector Space Consisting of All Traceless Diagonal Matrices Let $V$ be the set of all $n \times n$ diagonal matrices whose traces are zero. That is, \begin{equation*} V:=\left\{ A=\begin{bmatrix} a_{11} & 0 & \dots & 0 \\ 0 &a_{22} & \dots & 0 \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \dots & […]
  • Quiz 8. Determine Subsets are Subspaces: Functions Taking Integer Values / Set of Skew-Symmetric MatricesQuiz 8. Determine Subsets are Subspaces: Functions Taking Integer Values / Set of Skew-Symmetric Matrices (a) Let $C[-1,1]$ be the vector space over $\R$ of all real-valued continuous functions defined on the interval $[-1, 1]$. Consider the subset $F$ of $C[-1, 1]$ defined by \[F=\{ f(x)\in C[-1, 1] \mid f(0) \text{ is an integer}\}.\] Prove or disprove that $F$ is a subspace of […]
  • Determine Whether a Set of Functions $f(x)$ such that $f(x)=f(1-x)$ is a SubspaceDetermine Whether a Set of Functions $f(x)$ such that $f(x)=f(1-x)$ is a Subspace Let $V$ be the vector space over $\R$ of all real valued function on the interval $[0, 1]$ and let \[W=\{ f(x)\in V \mid f(x)=f(1-x) \text{ for } x\in [0,1]\}\] be a subset of $V$. Determine whether the subset $W$ is a subspace of the vector space $V$.   Proof. […]

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Vector Space Problems and Solutions
The Set of Vectors Perpendicular to a Given Vector is a Subspace

Fix the row vector $\mathbf{b} = \begin{bmatrix} -1 & 3 & -1 \end{bmatrix}$, and let $\R^3$ be the vector space...

Close