The Cyclotomic Field of 8-th Roots of Unity is $\Q(\zeta_8)=\Q(i, \sqrt{2})$

Field theory problems and solution in abstract algebra

Problem 491

Let $\zeta_8$ be a primitive $8$-th root of unity.
Prove that the cyclotomic field $\Q(\zeta_8)$ of the $8$-th root of unity is the field $\Q(i, \sqrt{2})$.

 
LoadingAdd to solve later

Sponsored Links

Proof.

Recall that the extension degree of the cyclotomic field of $n$-th roots of unity is given by $\phi(n)$, the Euler totient function.
Thus we have
\[[\Q(\zeta_8):\Q]=\phi(8)=4.\]

Without loss of generality, we may assume that
\[\zeta_8=e^{2 \pi i/8}=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}i.\]

Then $i=\zeta_8^2 \in \Q(\zeta_8)$ and $\zeta_8+\zeta_8^7=\sqrt{2}\in \Q(\zeta_8)$.
Thus, we have
\[\Q(i, \sqrt{2}) \subset \Q(\zeta_8).\]

It suffices now to prove that $[\Q(i, \sqrt{2}):\Q]=4$.
Note that we have $[\Q(i):\Q]=[\Q(\sqrt{2}):\Q]=2$.
Since $\Q(\sqrt{2}) \subset \R$, we know that $i\not \in \Q(\sqrt{2})$.
Thus, we have
\begin{align*}
[\Q(i, \sqrt{2}):\Q]=[[\Q(\sqrt{2})(i):\Q(\sqrt{2})][\Q(\sqrt{2}):\Q]=2\cdot 2=4.
\end{align*}

It follows that
\[\Q(\zeta_8)=\Q(i, \sqrt{2}).\]


LoadingAdd to solve later

Sponsored Links

More from my site

  • Extension Degree of Maximal Real Subfield of Cyclotomic FieldExtension Degree of Maximal Real Subfield of Cyclotomic Field Let $n$ be an integer greater than $2$ and let $\zeta=e^{2\pi i/n}$ be a primitive $n$-th root of unity. Determine the degree of the extension of $\Q(\zeta)$ over $\Q(\zeta+\zeta^{-1})$. The subfield $\Q(\zeta+\zeta^{-1})$ is called maximal real subfield.   Proof. […]
  • The Polynomial $x^p-2$ is Irreducible Over the Cyclotomic Field of $p$-th Root of UnityThe Polynomial $x^p-2$ is Irreducible Over the Cyclotomic Field of $p$-th Root of Unity Prove that the polynomial $x^p-2$ for a prime number $p$ is irreducible over the field $\Q(\zeta_p)$, where $\zeta_p$ is a primitive $p$th root of unity.   Hint. Consider the field extension $\Q(\sqrt[p]{2}, \zeta)$, where $\zeta$ is a primitive $p$-th root of […]
  • Example of an Infinite Algebraic ExtensionExample of an Infinite Algebraic Extension Find an example of an infinite algebraic extension over the field of rational numbers $\Q$ other than the algebraic closure $\bar{\Q}$ of $\Q$ in $\C$.   Definition (Algebraic Element, Algebraic Extension). Let $F$ be a field and let $E$ be an extension of […]
  • Galois Group of the Polynomial  $x^p-2$.Galois Group of the Polynomial $x^p-2$. Let $p \in \Z$ be a prime number. Then describe the elements of the Galois group of the polynomial $x^p-2$.   Solution. The roots of the polynomial $x^p-2$ are \[ \sqrt[p]{2}\zeta^k, k=0,1, \dots, p-1\] where $\sqrt[p]{2}$ is a real $p$-th root of $2$ and $\zeta$ […]
  • Cubic Polynomial $x^3-2$ is Irreducible Over the Field $\Q(i)$Cubic Polynomial $x^3-2$ is Irreducible Over the Field $\Q(i)$ Prove that the cubic polynomial $x^3-2$ is irreducible over the field $\Q(i)$.   Proof. Note that the polynomial $x^3-2$ is irreducible over $\Q$ by Eisenstein's criterion (with prime $p=2$). This implies that if $\alpha$ is any root of $x^3-2$, then the […]
  • Prove that $\F_3[x]/(x^2+1)$ is a Field and Find the Inverse ElementsProve that $\F_3[x]/(x^2+1)$ is a Field and Find the Inverse Elements Let $\F_3=\Zmod{3}$ be the finite field of order $3$. Consider the ring $\F_3[x]$ of polynomial over $\F_3$ and its ideal $I=(x^2+1)$ generated by $x^2+1\in \F_3[x]$. (a) Prove that the quotient ring $\F_3[x]/(x^2+1)$ is a field. How many elements does the field have? (b) […]
  • Galois Extension $\Q(\sqrt{2+\sqrt{2}})$ of Degree 4 with Cyclic GroupGalois Extension $\Q(\sqrt{2+\sqrt{2}})$ of Degree 4 with Cyclic Group Show that $\Q(\sqrt{2+\sqrt{2}})$ is a cyclic quartic field, that is, it is a Galois extension of degree $4$ with cyclic Galois group.   Proof. Put $\alpha=\sqrt{2+\sqrt{2}}$. Then we have $\alpha^2=2+\sqrt{2}$. Taking square of $\alpha^2-2=\sqrt{2}$, we obtain […]
  • Application of Field Extension to Linear CombinationApplication of Field Extension to Linear Combination Consider the cubic polynomial $f(x)=x^3-x+1$ in $\Q[x]$. Let $\alpha$ be any real root of $f(x)$. Then prove that $\sqrt{2}$ can not be written as a linear combination of $1, \alpha, \alpha^2$ with coefficients in $\Q$.   Proof. We first prove that the polynomial […]

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Field Theory
Field theory problems and solution in abstract algebra
A Rational Root of a Monic Polynomial with Integer Coefficients is an Integer

Suppose that $\alpha$ is a rational root of a monic polynomial $f(x)$ in $\Z[x]$. Prove that $\alpha$ is an integer....

Close