The Inverse Matrix of an Upper Triangular Matrix with Variables Problem 275

Let $A$ be the following $3\times 3$ upper triangular matrix.
$A=\begin{bmatrix} 1 & x & y \\ 0 &1 &z \\ 0 & 0 & 1 \end{bmatrix},$ where $x, y, z$ are some real numbers.

Determine whether the matrix $A$ is invertible or not. If it is invertible, then find the inverse matrix $A^{-1}$. Add to solve later

Solution.

We form the augmented matrix
$[A\mid I]= \left[\begin{array}{rrr|rrr} 1 & x & y & 1 &0 & 0 \\ 0 & 1 & z & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ \end{array} \right]$ and apply elementary row operations as follows.
\begin{align*}
\left[\begin{array}{rrr|rrr}
1 & x & y & 1 &0 & 0 \\
0 & 1 & z & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
\end{array} \right] \xrightarrow{R_1-xR_2}
\left[\begin{array}{rrr|rrr}
1 & 0 & y-xz & 1 & -x & 0 \\
0 & 1 & z & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
\end{array} \right]\10pt] \xrightarrow{\substack{R_1-(y-xz)R_3\\ R_2-zR_3}} \left[\begin{array}{rrr|rrr} 1 & 0 & 0 & 1 & -x & xz-y \\ 0 & 1 & 0 & 0 & 1 & -z \\ 0 & 0 & 1 & 0 & 0 & 1 \\ \end{array} \right]. \end{align*} We could reduce the matrix A into the identity matrix I. Thus, the matrix A is invertible and the right 3\times 3 matrix is the inverse matrix of A^{-1}. Hence, \[A^{-1}=\begin{bmatrix} 1 & -x & xz-y \\ 0 & 1 & -z \\ 0 & 0 & 1 \end{bmatrix}. Add to solve later

1 Response

1. 02/03/2017

[…] The inverse element of the matrix [begin{bmatrix} 1 & x & y \ 0 &1 &z \ 0 & 0 & 1 end{bmatrix}] is given by [begin{bmatrix} 1 & -x & xz-y \ 0 & 1 & -z \ 0 & 0 & 1 end{bmatrix}.] For a proof, see the post The inverse matrix of an upper triangular matrix with variables. […]

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra The Union of Two Subspaces is Not a Subspace in a Vector Space

Let $U$ and $V$ be subspaces of the vector space $\R^n$. If neither $U$ nor $V$ is a subset of...

Close