The Matrix Exponential of a Diagonal Matrix

Linear Algebra Problems and Solutions

Problem 681

For a square matrix $M$, its matrix exponential is defined by
\[e^M = \sum_{i=0}^\infty \frac{M^k}{k!}.\]

Suppose that $M$ is a diagonal matrix
\[ M = \begin{bmatrix} m_{1 1} & 0 & 0 & \cdots & 0 \\ 0 & m_{2 2} & 0 & \cdots & 0 \\ 0 & 0 & m_{3 3} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & m_{n n} \end{bmatrix}.\]

Find the matrix exponential $e^M$.

 
LoadingAdd to solve later

Sponsored Links

Solution.

First, we find $M^k$ for each integer $k \geq 0$. The first couple powers can be calculated directly,
\[M^0 = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix} , \quad M = \begin{bmatrix} m_{1 1} & 0 & 0 & \cdots & 0 \\ 0 & m_{2 2} & 0 & \cdots & 0 \\ 0 & 0 & m_{3 3} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & m_{n n} \end{bmatrix},\] \[M^2 = \begin{bmatrix} m^2_{1 1} & 0 & 0 & \cdots & 0 \\ 0 & m^2_{2 2} & 0 & \cdots & 0 \\ 0 & 0 & m^2_{3 3} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & m^2_{n n} \end{bmatrix} , \quad M^3 = \begin{bmatrix} m^3_{1 1} & 0 & 0 & \cdots & 0 \\ 0 & m^3_{2 2} & 0 & \cdots & 0 \\ 0 & 0 & m^3_{3 3} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & m^3_{n n} \end{bmatrix}.\]

The general pattern can now be seen:
\[M^k = \begin{bmatrix} m^k_{1 1} & 0 & 0 & \cdots & 0 \\ 0 & m^k_{2 2} & 0 & \cdots & 0 \\ 0 & 0 & m^k_{3 3} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & m^k_{n n} \end{bmatrix}.\]


Now, we can calculate the infinite series $e^M$:
\begin{align*}
e^M &= \sum_{k=0}^{\infty} \frac{ M^k }{k!} \\
&= \sum_{k=0}^\infty \frac{1}{k!} \begin{bmatrix} m^k_{1, 1} & 0 & 0 & \cdots & 0 \\ 0 & m^k_{2, 2} & 0 & \cdots & 0 \\ 0 & 0 & m^k_{3, 3} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & m^k_{n, n} \end{bmatrix} \\
&= \begin{bmatrix} \sum_{k=0}^\infty \frac{ m^k_{1 1} }{k!} & 0 & 0 & \cdots & 0 \\ 0 & \sum_{k=0}^\infty \frac{ m^k_{2 2} }{k!} & 0 & \cdots & 0 \\ 0 & 0 & \sum_{k=0}^\infty \frac{ m^k_{3 3} }{k!} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \sum_{k=0}^\infty \frac{ m^k_{n n} }{k!} \end{bmatrix} . \end{align*}


Now, for any real number $c$ we can write $e^c$ as the series
\[e^c = \sum_{k=0}^\infty \frac{ c^k }{k!}.\]

Thus, the matrix exponential $e^M$ is
\[e^M = \begin{bmatrix} e^{ m_{1 1} } & 0 & 0 & \cdots & 0 \\ 0 & e^{ m_{2 2} } & 0 & \cdots & 0 \\ 0 & 0 & e^{ m_{3 3} } & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & e^{ m_{n n} } \end{bmatrix}.\]


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear Transformation problems and solutions
Find the Nullspace and Range of the Linear Transformation $T(f)(x) = f(x)-f(0)$

Let $C([-1, 1])$ denote the vector space of real-valued functions on the interval $[-1, 1]$. Define the vector subspace \[W...

Close