The Number of Elements in a Finite Field is a Power of a Prime Number

Field theory problems and solution in abstract algebra

Problem 726

Let $\F$ be a finite field of characteristic $p$.

Prove that the number of elements of $\F$ is $p^n$ for some positive integer $n$.

LoadingAdd to solve later

Sponsored Links

Proof.

First note that since $\F$ is a finite field, the characteristic of $\F$ must be a prime number $p$. Then $\F$ contains the prime field $\F_p$ and $\F$ is a finite extension of $\F_p$, say, of degree $n$.

This means that we have a basis $\{v_1, \dots, v_n\}$ of $\F$ as a vector space over $\F_p$. Hence any element $x\in \F$ can be uniquely written as
\[x=a_1v_1+\cdots a_n v_n,\] where $a_i \in \F_p$ for $i=1, \dots, n$.

It follows that the fields $\F$ has $p^n$ elements.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Each Element in a Finite Field is the Sum of Two SquaresEach Element in a Finite Field is the Sum of Two Squares Let $F$ be a finite field. Prove that each element in the field $F$ is the sum of two squares in $F$. Proof. Let $x$ be an element in $F$. We want to show that there exists $a, b\in F$ such that \[x=a^2+b^2.\] Since $F$ is a finite field, the characteristic $p$ of the field […]
  • Prove that $\F_3[x]/(x^2+1)$ is a Field and Find the Inverse ElementsProve that $\F_3[x]/(x^2+1)$ is a Field and Find the Inverse Elements Let $\F_3=\Zmod{3}$ be the finite field of order $3$. Consider the ring $\F_3[x]$ of polynomial over $\F_3$ and its ideal $I=(x^2+1)$ generated by $x^2+1\in \F_3[x]$. (a) Prove that the quotient ring $\F_3[x]/(x^2+1)$ is a field. How many elements does the field have? (b) […]
  • Explicit Field Isomorphism of Finite FieldsExplicit Field Isomorphism of Finite Fields (a) Let $f_1(x)$ and $f_2(x)$ be irreducible polynomials over a finite field $\F_p$, where $p$ is a prime number. Suppose that $f_1(x)$ and $f_2(x)$ have the same degrees. Then show that fields $\F_p[x]/(f_1(x))$ and $\F_p[x]/(f_2(x))$ are isomorphic. (b) Show that the polynomials […]
  • The Polynomial $x^p-2$ is Irreducible Over the Cyclotomic Field of $p$-th Root of UnityThe Polynomial $x^p-2$ is Irreducible Over the Cyclotomic Field of $p$-th Root of Unity Prove that the polynomial $x^p-2$ for a prime number $p$ is irreducible over the field $\Q(\zeta_p)$, where $\zeta_p$ is a primitive $p$th root of unity.   Hint. Consider the field extension $\Q(\sqrt[p]{2}, \zeta)$, where $\zeta$ is a primitive $p$-th root of […]
  • Example of an Infinite Algebraic ExtensionExample of an Infinite Algebraic Extension Find an example of an infinite algebraic extension over the field of rational numbers $\Q$ other than the algebraic closure $\bar{\Q}$ of $\Q$ in $\C$.   Definition (Algebraic Element, Algebraic Extension). Let $F$ be a field and let $E$ be an extension of […]
  • In a Field of Positive Characteristic, $A^p=I$ Does Not Imply that $A$ is Diagonalizable.In a Field of Positive Characteristic, $A^p=I$ Does Not Imply that $A$ is Diagonalizable. Show that the matrix $A=\begin{bmatrix} 1 & \alpha\\ 0& 1 \end{bmatrix}$, where $\alpha$ is an element of a field $F$ of characteristic $p>0$ satisfies $A^p=I$ and the matrix is not diagonalizable over $F$ if $\alpha \neq 0$. Comment. Remark that if $A$ is a square […]
  • Cubic Polynomial $x^3-2$ is Irreducible Over the Field $\Q(i)$Cubic Polynomial $x^3-2$ is Irreducible Over the Field $\Q(i)$ Prove that the cubic polynomial $x^3-2$ is irreducible over the field $\Q(i)$.   Proof. Note that the polynomial $x^3-2$ is irreducible over $\Q$ by Eisenstein's criterion (with prime $p=2$). This implies that if $\alpha$ is any root of $x^3-2$, then the […]
  • Galois Group of the Polynomial  $x^p-2$.Galois Group of the Polynomial $x^p-2$. Let $p \in \Z$ be a prime number. Then describe the elements of the Galois group of the polynomial $x^p-2$.   Solution. The roots of the polynomial $x^p-2$ are \[ \sqrt[p]{2}\zeta^k, k=0,1, \dots, p-1\] where $\sqrt[p]{2}$ is a real $p$-th root of $2$ and $\zeta$ […]

You may also like...

2 Responses

  1. Dickens says:

    I liked this platform,

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Field Theory
Field theory problems and solution in abstract algebra
Prove that $\F_3[x]/(x^2+1)$ is a Field and Find the Inverse Elements

Let $\F_3=\Zmod{3}$ be the finite field of order $3$. Consider the ring $\F_3[x]$ of polynomial over $\F_3$ and its ideal...

Close