# UFD

by Yu ·

Add to solve later

Add to solve later

Add to solve later

### More from my site

- The Additive Group $\R$ is Isomorphic to the Multiplicative Group $\R^{+}$ by Exponent Function Let $\R=(\R, +)$ be the additive group of real numbers and let $\R^{\times}=(\R\setminus\{0\}, \cdot)$ be the multiplicative group of real numbers. (a) Prove that the map $\exp:\R \to \R^{\times}$ defined by \[\exp(x)=e^x\] is an injective group homomorphism. (b) Prove that […]
- If Every Vector is Eigenvector, then Matrix is a Multiple of Identity Matrix Let $A$ be an $n\times n$ matrix. Assume that every vector $\mathbf{x}$ in $\R^n$ is an eigenvector for some eigenvalue of $A$. Prove that there exists $\lambda\in \R$ such that $A=\lambda I$, where $I$ is the $n\times n$ identity matrix. Proof. Let us write […]
- The Cyclotomic Field of 8-th Roots of Unity is $\Q(\zeta_8)=\Q(i, \sqrt{2})$ Let $\zeta_8$ be a primitive $8$-th root of unity. Prove that the cyclotomic field $\Q(\zeta_8)$ of the $8$-th root of unity is the field $\Q(i, \sqrt{2})$. Proof. Recall that the extension degree of the cyclotomic field of $n$-th roots of unity is given by […]
- Abelian Normal subgroup, Quotient Group, and Automorphism Group Let $G$ be a finite group and let $N$ be a normal abelian subgroup of $G$. Let $\Aut(N)$ be the group of automorphisms of $G$. Suppose that the orders of groups $G/N$ and $\Aut(N)$ are relatively prime. Then prove that $N$ is contained in the center of […]
- Quiz 8. Determine Subsets are Subspaces: Functions Taking Integer Values / Set of Skew-Symmetric Matrices (a) Let $C[-1,1]$ be the vector space over $\R$ of all real-valued continuous functions defined on the interval $[-1, 1]$. Consider the subset $F$ of $C[-1, 1]$ defined by \[F=\{ f(x)\in C[-1, 1] \mid f(0) \text{ is an integer}\}.\] Prove or disprove that $F$ is a subspace of […]
- Dot Product, Lengths, and Distances of Complex Vectors For this problem, use the complex vectors \[ \mathbf{w}_1 = \begin{bmatrix} 1 + i \\ 1 - i \\ 0 \end{bmatrix} , \, \mathbf{w}_2 = \begin{bmatrix} -i \\ 0 \\ 2 - i \end{bmatrix} , \, \mathbf{w}_3 = \begin{bmatrix} 2+i \\ 1 - 3i \\ 2i \end{bmatrix} . \] Suppose $\mathbf{w}_4$ is […]
- Find a Nonsingular Matrix Satisfying Some Relation Determine whether there exists a nonsingular matrix $A$ if \[A^2=AB+2A,\] where $B$ is the following matrix. If such a nonsingular matrix $A$ exists, find the inverse matrix $A^{-1}$. (a) \[B=\begin{bmatrix} -1 & 1 & -1 \\ 0 &-1 &0 \\ 1 & 2 & […]
- The Matrix $[A_1, \dots, A_{n-1}, A\mathbf{b}]$ is Always Singular, Where $A=[A_1,\dots, A_{n-1}]$ and $\mathbf{b}\in \R^{n-1}$. Let $A$ be an $n\times (n-1)$ matrix and let $\mathbf{b}$ be an $(n-1)$-dimensional vector. Then the product $A\mathbf{b}$ is an $n$-dimensional vector. Set the $n\times n$ matrix $B=[A_1, A_2, \dots, A_{n-1}, A\mathbf{b}]$, where $A_i$ is the $i$-th column vector of […]