# The Range and Null Space of the Zero Transformation of Vector Spaces ## Problem 555

Let $U$ and $V$ be vector spaces over a scalar field $\F$.
Define the map $T:U\to V$ by $T(\mathbf{u})=\mathbf{0}_V$ for each vector $\mathbf{u}\in U$.

(a) Prove that $T:U\to V$ is a linear transformation.
(Hence, $T$ is called the zero transformation.)

(b) Determine the null space $\calN(T)$ and the range $\calR(T)$ of $T$. Add to solve later

## Proof.

### (a) Prove that $T:U\to V$ is a linear transformation.

Let $\mathbf{u}_1, \mathbf{u}_2\in U$ and $r$ be a scalar, that is, $r\in \F$.
It follows from the definition of $T$ that
\begin{align*}
\end{align*}
since $\mathbf{u}_1+\mathbf{u}_2, r\mathbf{u}_1\in U$.
Hence we have
\begin{align*}
T(\mathbf{u}_1+\mathbf{u}_2)&=\mathbf{0}_V=\mathbf{0}_V+\mathbf{0}_V=T(\mathbf{u}_1)+T(\mathbf{u}_2)\\
T(r\mathbf{u}_1)&=\mathbf{0}_V=r\mathbf{0}_V=rT(\mathbf{u}_1).
\end{align*}
Since these equalities holds for all $\mathbf{u}_1, \mathbf{u}_2\in U$, and $r\in \F$, the map $T:U\to V$ is a linear transformation.

### (b) Determine the null space $\calN(T)$ and the range $\calR(T)$ of $T$.

The null space $\calN(T)$ of $T$ is, by definition,
\begin{align*}
\calN(T)=\{\mathbf{u}\in U \mid T(\mathbf{u})=\mathbf{0}_V\}.
\end{align*}
Since $T(\mathbf{u})=\mathbf{0}_V$ for every $\mathbf{u}\in U$, we obtain
$\calN(T)=U.$

The range $\calR(T)$ of $T$ is, by definition,
$\calR(T)=\{\mathbf{v} \in V \mid \text{there exists } \mathbf{u}\in U \text{ such that } T(\mathbf{u})=\mathbf{v}\}.$

Since every vector of $U$ is mapped into $\mathbf{0}_V$, we have
$\calR(T)=\{\mathbf{0}_V\}.$ Add to solve later

### More from my site

#### You may also like...

This site uses Akismet to reduce spam. Learn how your comment data is processed.

###### More in Linear Algebra ##### Find the Inverse Linear Transformation if the Linear Transformation is an Isomorphism

Let $T:\R^3 \to \R^3$ be the linear transformation defined by the formula \[T\left(\, \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}...

Close